6 research outputs found
Eutrophication and succession of phytoplankton in reservoir of Korea - monthly variations of plankton community in Lake Soyang
The community of plankton and the environmental factors were investigated in Lake Soyang from January to July 1994. The relationship between transparency and biovolume of phytoplankton was negatively correlated. Phytoplankton dominants in Lake Soyang were Anabaena spp., Microcystis aeruginosa, Asterionella formosa, Asterionella gracillima Melosira distans, Synedra acus, and Asterococcus limneticus, Zooplankton dominants were Polyarthra spp., Keratella spp., Asplanchna placentula, Bosmina coregoni, and Daphnia longispona. Phytoplankton and zooplankton were clearly related each other with respect to biovolume, not to numbers. Microcystis aeruginosa rapidly increased and Daphnia longirostris disappeared in July, because Microcystis aeruginosa secret toxic substances to Daphnia longirostris. Transparency decreased from January to June, but increased in July. The highest number of phytoplankton was obserbed in April, and one month later, the zooplankton reached a maximal level in population density, implicating that spring bloom of phytoplankton was good feeding condition for zooplankton.Article信州大学理学部附属諏訪臨湖実験所報告 9: 175-186(1995)departmental bulletin pape
言語の起源 : 自分自身との対話としての思考 : 人工生命の観点から
2012-10-11本稿では、言語の起源に関して、Kirby(2002)で示された人工生命の枠組みでの提案の基本的な仮定を踏襲しながらも、重要な点で異なる提案をする。具体的には、Kirby(2002〕では、個々の人間(agent)がやり取りすることで、相手の発話から学び、それに対しての発話から、相手が学ぶという、相互のやり取りで、言語が形作られ、言語が発展していくと考えられている。agent間の社会的コミュニケーションを重視している。それに対し、本稿では、個々の人間の間のやり取りではなく、一人の人間の中に、agentが二人いて、その二人のagent間の対話が、言語を生み出したというモデルを提案する。私と私自身との対話を考えるのである。言語の重要な特性である構成性は、既に実現していたと仮定する。また、言語の獲得のモデルとしては、大きく三つ、跳躍説、漸進説、前適応説があるが、いくつかの離散的な機能があって、それらが揃って、比較的短期間の間に、結果として言語を獲得したという前適応説を仮定する。そして、言語の誕生は、回帰的な構造を作れるようになったことで実現したと考える。これらを自然な形で統合できるモデルを提案する。departmental bulletin pape
Distribution of phenotypic characteristics of the mutant population and rate of pleiotropy
Number of M2 families in each phenotypic group. The x-axis indicates the nine major phenotypic categories, listed in Table 2, and the y-axis indicates the total number of M2 families. Each bar represents the number of mutants in the corresponding category. The blue bar represents the quantity of pleiotropic mutants (having more than one phenotype), given by the first number in the category label. The red bar represents the non-pleiotropic mutants and is given by the second number in the category label. Total number of M2 families (y-axis) sharing 1-5 major phenotypic categories (x-axis). The bar for one phenotypic category indicates how many mutants are categorized in only one phenotypic group (non-pleiotropic mutants), and the bars for the 2-5 phenotypic categories represent the number of mutants that share two to five phenotypes, respectively. In each case, the total number of mutants is indicated on the top of the bar.<p><b>Copyright information:</b></p><p>Taken from "UTILLdb, a forward and reverse genetics tool"</p><p>http://genomebiology.com/2008/9/2/R43</p><p>Genome Biology 2008;9(2):R43-R43.</p><p>Published online 26 Feb 2008</p><p>PMCID:PMC2374714.</p><p></p
Examples of mutant phenotypes representing the nine major phenotypic groups
Plant 566: cotyledon color, albino. Plant 939: plantlet architecture, bushy; plant architecture, hyper compact; leaf color, pale green; stem size, extreme dwarf. Plant 54: plant architecture, determinate growth. Plant 1,236: plant architecture, basal branching; leaf color, pale green, yellow; leaf size, medium; stem size, dwarf. Plant 903: leaf, cone shaped at leaf base; flowers, sterile flowers. Plant 1,567: leaf, distorted; stipule, silver-argentous. Plant 630: flowers, cauliflower type inflorescence; flowers, abnormal all; stem, dwarf; leaf, upcurling.<p><b>Copyright information:</b></p><p>Taken from "UTILLdb, a forward and reverse genetics tool"</p><p>http://genomebiology.com/2008/9/2/R43</p><p>Genome Biology 2008;9(2):R43-R43.</p><p>Published online 26 Feb 2008</p><p>PMCID:PMC2374714.</p><p></p
