162 research outputs found

    A NOTE ON NO-PARTICLE IN HEAD-INTERNAL RELATIVES

    Get PDF
    departmental bulletin pape

    A Study on the Crack Growth Behavior of Carbon Steels under Repeted Impact Tensile Loads

    Get PDF
    1KJ00003583532論文Articledepartmental bulletin pape

    金融庁が求める生保と地銀の適正な関係

    Get PDF
    departmental bulletin pape

    Onboard Data Prioritization Using Multi-Class Image Segmentation for Nanosatellites

    Get PDF
    Nanosatellites are proliferating as low-cost, dedicated remote sensing opportunities for small nations. However, nanosatellites’ performance as remote sensing platforms is impaired by low downlink speeds, which typically range from 1200 to 9600 bps. Additionally, an estimated 67% of downloaded data are unusable for further applications due to excess cloud cover. To alleviate this issue, we propose an image segmentation and prioritization algorithm to classify and segment the contents of captured images onboard the nanosatellite. This algorithm prioritizes images with clear captures of water bodies and vegetated areas with high downlink priority. This in-orbit organization of images will aid ground station operators with downlinking images suitable for further ground-based remote sensing analysis. The proposed algorithm uses Convolutional Neural Network (CNN) models to classify and segment captured image data. In this study, we compare various model architectures and backbone designs for segmentation and assess their performance. The models are trained on a dataset that simulates captured data from nanosatellites and transferred to the satellite hardware to conduct inferences. Ground testing for the satellite has achieved a peak Mean IoU of 75% and an F1 Score of 0.85 for multi-class segmentation. The proposed algorithm is expected to improve data budget downlink efficiency by up to 42% based on validation testing.journal articl

    -文永二年『亀山殿五首歌合』の再検討-

    Get PDF
    application/pdf研究論文departmental bulletin pape

    Scalable and Configurable Electrical Interface Board for Bus System Development of Different CubeSat Platforms

    Get PDF
    A flight-proven electrical bus system for the 1U CubeSat platform was designed in the BIRDS satellite program at the Kyushu Institute of Technology. The bus utilizes a backplane board as the mechanical and electrical interface between the subsystems and the payloads. The electrical routes on the backplane are configured by software using a complex programmable logic device (CPLD). It allows for reusability in multiple CubeSat projects while lowering costs and development time; as a result, resources can be directed toward developing the mission payloads. Lastly, it provides more time for integration and system-level verification, which are critical for a reliable and successful mission. The current trend of CubeSat launches is focused on 3U and 6U platforms due to their capability to accommodate multiple and complex payloads. Hence, a demonstration of the electrical bus system to adapt to larger platforms is necessary. This study demonstrates the configurable electrical interface board’s scalability in two cases: the capability to accommodate (1) multiple missions and (2) complex payload requirements. In the first case, a 3U-size configurable backplane prototype was designed to handle 13 mission payloads. Four CPLDs were used to manage the limited number of digital interfaces between the existing bus system and the mission payloads. The measured transmission delay was up to 20 ns, which is acceptable for simple serial communications such as UART and SPI. Furthermore, the measured energy consumption of the backplane per ISS orbit was only 28 mWh. Lastly, the designed backplane was proven to be highly reliable as no bit errors were detected throughout the functionality tests. In the second case, a configurable backplane was implemented in a 6U CubeSat with complex payload requirements compared to the 1U CubeSat platform. The CubeSat was deployed in ISS orbit, and the initial on-orbit results indicated that the designed backplane supported missions without issues.journal articl
    corecore