8,415 research outputs found

    Whole genome sequencing and microsatellite analysis of the Plasmodium falciparum E5 NF54 strain show that the var, rifin and stevor gene families follow Mendelian inheritance

    Get PDF
    Background: Plasmodium falciparum exhibits a high degree of inter-isolate genetic diversity in its variant surface antigen (VSA) families: P. falciparum erythrocyte membrane protein 1, repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR). The role of recombination for the generation of this diversity is a subject of ongoing research. Here the genome of E5, a sibling of the 3D7 genome strain is presented. Short and long read whole genome sequencing (WGS) techniques (Ilumina, Pacific Bioscience) and a set of 84 microsatellites (MS) were employed to characterize the 3D7 and non-3D7 parts of the E5 genome. This is the first time that VSA genes in sibling parasites were analysed with long read sequencing technology. Results: Of the 5733 E5 genes only 278 genes, mostly var and rifin/stevor genes, had no orthologues in the 3D7 genome. WGS and MS analysis revealed that chromosomal crossovers occurred at a rate of 0–3 per chromosome. var, stevor and rifin genes were inherited within the respective non-3D7 or 3D7 chromosomal context. 54 of the 84 MS PCR fragments correctly identified the respective MS as 3D7- or non-3D7 and this correlated with var and rifin/stevor gene inheritance in the adjacent chromosomal regions. E5 had 61 var and 189 rifin/stevor genes. One large non-chromosomal recombination event resulted in a new var gene on chromosome 14. The remainder of the E5 3D7-type subtelomeric and central regions were identical to 3D7. Conclusions: The data show that the rifin/stevor and var gene families represent the most diverse compartments of the P. falciparum genome but that the majority of var genes are inherited without alterations within their respective parental chromosomal context. Furthermore, MS genotyping with 54 MS can successfully distinguish between two sibling progeny of a natural P. falciparum cross and thus can be used to investigate identity by descent in field isolates

    Collision strengths and transition probabilities for Co III forbidden lines

    Get PDF
    In this paper we compute the collision strengths and their thermally-averaged Maxwellian values for electron transitions between the fifteen lowest levels of doubly-ionised cobalt, Co^{2+}, which give rise to forbidden emission lines in the visible and infrared region of spectrum. The calculations also include transition probabilities and predicted relative line emissivities. The data are particularly useful for analysing the thermodynamic conditions of supernova ejecta.Comment: 9 pages, 2 figures, 11 table

    The Plasmodium falciparum, Nima-related kinase Pfnek-4: a marker for asexual parasites committed to sexual differentiation

    Get PDF
    <b>Background</b> Malaria parasites undergo, in the vertebrate host, a developmental switch from asexual replication to sexual differentiation leading to the formation of gametocytes, the only form able to survive in the mosquito vector. Regulation of the onset of the sexual phase remains largely unknown and represents an important gap in the understanding of the parasite's complex biology. <b>Methods:</b> The expression and function of the Nima-related kinase Pfnek-4 during the early sexual development of the human malaria parasite Plasmodium falciparum were investigated, using three types of transgenic Plasmodium falciparum 3D7 lines: (i) episomally expressing a Pfnek-4-GFP fusion protein under the control of its cognate pfnek-4 promoter; (ii) episomally expressing negative or positive selectable markers, yeast cytosine deaminase-uridyl phosphoribosyl transferase, or human dihydrofolate reductase, under the control of the pfnek-4 promoter; and (iii) lacking a functional pfnek-4 gene. Parasite transfectants were analysed by fluorescence microscopy and flow cytometry. In vitro growth rate and gametocyte formation were determined by Giemsa-stained blood smears. <b>Results:</b> The Pfnek-4-GFP protein was found to be expressed in stage II to V gametocytes and, unexpectedly, in a subset of asexual-stage parasites undergoing schizogony. Culture conditions stimulating gametocyte formation resulted in significant increase of this schizont subpopulation. Moreover, sorted asexual parasites expressing the Pfnek-4-GFP protein displayed elevated gametocyte formation when returned to in vitro culture in presence of fresh red blood cells, when compared to GFP- parasites from the same initial population. Negative selection of asexual parasites expressing pfnek-4 showed a marginal reduction in growth rate, whereas positive selection caused a marked reduction in parasitaemia, but was not sufficient to completely abolish proliferation. Pfnek-4- clones are not affected in their asexual growth and produced normal numbers of stage V gametocytes. <b>Conclusions:</b> The results indicate that Pfnek-4 is not strictly gametocyte-specific, and is expressed in a small subset of asexual parasites displaying high rate conversion to sexual development. Pfnek-4 is not required for erythrocytic schizogony and gametocytogenesis. This is the first study to report the use of a molecular marker for the sorting of sexually-committed schizont stage P. falciparum parasites, which opens the way to molecular characterization of this pre-differentiated subpopulation

    Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines

    Get PDF
    BackgroundPolymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies.MethodsWe aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence.ResultsWe found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis.ConclusionsAntigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines

    Indels, structural variation, and recombination drive genomic diversity inPlasmodium falciparum

    Get PDF
    The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired

    Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    Get PDF
    BAckground: Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. Results: We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. Conclusion: We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material

    The Gates Malaria Partnership: a consortium approach to malaria research and capacity development.

    No full text
    Recently, there has been a major increase in financial support for malaria control. Most of these funds have, appropriately, been spent on the tools needed for effective prevention and treatment of malaria such as insecticide-treated bed nets, indoor residual spraying and artemisinin combination therapy. There has been less investment in the training of the scientists from malaria-endemic countries needed to support these large and increasingly complex malaria control programmes, especially in Africa. In 2000, with support from the Bill & Melinda Gates Foundation, the Gates Malaria Partnership was established to support postgraduate training of African scientists wishing to pursue a career in malaria research. The programme had three research capacity development components: a PhD fellowship programme, a postdoctoral fellowship programme and a laboratory infrastructure programme. During an 8-year period, 36 African PhD students and six postdoctoral fellows were supported, and two research laboratories were built in Tanzania. Some of the lessons learnt during this project--such as the need to improve PhD supervision in African universities and to provide better support for postdoctoral fellows--are now being applied to a successor malaria research capacity development programme, the Malaria Capacity Development Consortium, and may be of interest to other groups involved in improving postgraduate training in health sciences in African universities
    corecore