1,183,518 research outputs found

    Four Years of Extreme Ultraviolet Observations of Markarian 421: II. Temporal Analysis

    Get PDF
    The Extreme Ultraviolet Explorer (EUVE) satellite accumulated ~one million seconds of public data between 1994 and 1997 for the BL Lacertae object Markarian 421. This is the second of two papers in which we present the results of spectral and temporal analysis of this EUVE data set. We analyze in the present paper the imaging data by means of power spectrum and structure function techniques, while the spectral analysis is presented in a companion paper. We find for MRK 421 a power spectrum with slope -2.14 +- 0.28 with a break at ~3 days. This is the first time that a break in the power spectrum of a BL Lacertae object has been found. We also find evidence of non-stationarity for MRK 421 EUV emissionComment: Accepted for publication in the Astrophysical Journal. 16 pages, 14 Postscript figures, 3 Table

    Scale Symmetry Breaking from the Dynamics of Maximal Rank Gauge Field Strengths

    Full text link
    Scale invariant theories which contain maximal rank gauge field strengths (of DD indices in DD dimensions) are studied. The integration of the equations of motion of these gauge fields leads to the s.s.b. of scale invariance. The cases in study are: i) the spontaneous generation of r1r^{-1} potentials in particle mechanics in a theory that contains only r2r^{-2} potentials in the scale invariant phase, ii) mass generation in scalar field theories iii) generation of non trivial dilaton potentials in generally covariant theories, iv) spontaneous generation of confining behavior in gauge theories. The possible origin of these models is discussed.Comment: 14 pages, latex, no figures, references adde

    High probability state transfer in spin-1/2 chains: Analytical and numerical approaches

    Full text link
    This article is devoted to the development of analytical and numerical approaches to the problem of the end-to-end quantum state transfer along the spin-1/2 chain using two methods: (a) a homogeneous spin chain with week end bonds and equal Larmor frequencies and (b) a homogeneous spin chain with end Larmor frequencies different from inner ones. A tridiagonal matrix representation of the XY Hamiltonian with nearest neighbor interactions relevant to the quantum state transfer is exactly diagonalized for a combination of the above two methods. In order to take into account interactions of the remote spins we used numerical simulations of the quantum state transfer in ten-node chains. We compare the state transfer times obtained using the two above methods for chains governed by the both XY and XXZ Hamiltonians and using both nearest neighbor and all node interactions.Comment: 16 pages, 5 figure

    Interplay of spin-orbit coupling and Zeeman splitting in the absorption lineshape of 2D fermions

    Full text link
    We suggest that electron spin resonance (ESR) experiment can be used as a probe of spinon excitations of hypothetical spin-liquid state of frustrated antiferromagnet in the presence of asymmetric Dzyaloshinskii-Moriya (DM) interaction. We describe assumptions under which the ESR response is reduced to the response of 2D electron gas with Rashba spin-orbit coupling. Unlike previous treatments, the spin-orbit coupling, \Delta_{SO}, is not assumed small compared to the Zeeman splitting, \Delta_Z. We demonstrate that ESR response diverges at the edges of the absorption spectrum for ac magnetic field perpendicular to the static field. At the compensation point, \Delta_{SO}\approx \Delta_Z, the broad absorption spectrum exhibits features that evolve with temperature, T, even when T is comparable to the Fermi energy.Comment: 11 pages, 6 figure

    Anomalous superconducting proximity effect and coherent charge transport in semiconducting thin film with spin-orbit interaction

    Full text link
    We present a microscopic theory of the superconducting proximity effect in a semiconducting thin film with spin-orbit interaction (NSON_{SO}) in an external magnetic field. We demonstrate that an effective 1D Hamiltonian which describes induced superconductivity in NSON_{SO} in contact with a usual ss-wave superconductor possesses not only spin-singlet induced superconducting order parameter term, as commonly adopted, but spin triplet order parameter term also. Using this new effective Hamiltonian we confirm previous results for a normal current across contacts of NSON_{SO} with a normal metal and for a Josephson current with the same NSON_{SO} with induced superconductivity, obtained previously in the framework of the phenomenological Hamiltonian without spin-triplet terms. However, a calculated current-phase relation across the transparent contact between NSON_{SO} with induced superconductivity in magnetic field and usual ss-wave superconductor differs significantly from previous results. We suggest the experiment which can confirm our theoretical predictions.Comment: 5 pages, 6 figure
    corecore