123 research outputs found
Nuclear effects in positive pion electroproduction on the deuteron near threshold
Positive pion electroproduction from the deuteron near threshold has been
considered within an approach based on the unitary transformation method. The
gauge independence of the treatment is provided by using an explicitly gauge
independent expression for the reaction amplitude. The results of calculations
for kinematics of the experiments on forward-angle meson
electroproduction accomplished at Saclay and Jefferson Laboratory are discussed
and compared with those given by the impulse approximation. It is shown that
the observed behaviour of the cross sections is in accordance with the
calculations based on the pion-nucleon dynamics. In particular, the pion
production rate suppression in the reaction compared to that
for the one can be due to such ``nuclear medium'' effects as
nucleon motion and binding along with Pauli blocking in the final state.Comment: 15 pages, 8 figure
Study of deuteron-proton charge exchange reaction at small transfer momentum
The charge-exchange reaction pd->npp at 1 GeV projectile proton energy is
studied in the multiple-scattering expansion technique. This reaction is
considered in a special kinematics, when the transfer momentum from the beam
proton to fast neutron is close to zero. The differential cross section and a
set of polarization observables are calculated. It was shown that contribution
of the final state interaction between two protons is very significant.Comment: 11 pages, 8 figure
Near-threshold production of omega mesons in the pn -> d omega reaction
The first measurement of the p n -> d omega total cross section has been
achieved at mean excess energies of Q = 28 and 57 MeV by using a deuterium
cluster-jet target. The momentum of the fast deuteron was measured in the ANKE
spectrometer at COSY-Juelich and that of the slow "spectator" proton p(sp) from
the p d -> p(sp) d omega reaction in a silicon telescope placed close to the
target. The cross sections lie above those measured for p p -> p p omega but
seem to be below theoretical predictions.Comment: 7 pages, 8 figures; second approach to describe the background has
been added; results changed insignificantly, EPJ in pres
Signal yields, energy resolution, and recombination fluctuations in liquid xenon
This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with H3. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.Peer Reviewe
First Searches for Axions and Axionlike Particles with the LUX Experiment
The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg. A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5×10-12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV/c2, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV/c2 are excluded. For galactic axionlike particles, values of gAe larger than 4.2×10-13 are excluded for particle masses in the range 1–16 keV/c2. These are the most stringent constraints to date for these interactions.Peer Reviewe
Results from a search for dark matter in the complete LUX exposure
We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×104 kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c-2, WIMP-nucleon spin-independent cross sections above 2.2×10-46 cm2 are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10-46 cm2 at 50 GeV c-2.Peer Reviewe
The charcot foot in diabetes.
The diabetic Charcot foot syndrome is a serious and potentially limb-threatening lower-extremity complication of diabetes. First described in 1883, this enigmatic condition continues to challenge even the most experienced practitioners. Now considered an inflammatory syndrome, the diabetic Charcot foot is characterized by varying degrees of bone and joint disorganization secondary to underlying neuropathy, trauma, and perturbations of bone metabolism. An international task force of experts was convened by the American Diabetes Association and the American Podiatric Medical Association in January 2011 to summarize available evidence on the pathophysiology, natural history, presentations, and treatment recommendations for this entity
Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV
We report on the first measurement of the triangular , quadrangular
, and pentagonal charged particle flow in Pb-Pb collisions at 2.76
TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show
that the triangular flow can be described in terms of the initial spatial
anisotropy and its fluctuations, which provides strong constraints on its
origin. In the most central events, where the elliptic flow and
have similar magnitude, a double peaked structure in the two-particle azimuthal
correlations is observed, which is often interpreted as a Mach cone response to
fast partons. We show that this structure can be naturally explained from the
measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
- …
