360 research outputs found

    M2 to D2 and vice versa by 3-Lie and Lie bialgebra

    Get PDF
    Using the concept of 3-Lie bialgebra, which has recently been defined in arXiv:1604.04475, we construct Bagger-Lambert-Gustavson (BLG) model for M2-brane on Manin triple of a special 3-Lie bialgebra. Then by using the correspondence and relation between those 3-Lie bialgebra with Lie bialgebra, we reduce this model to an N=(4,4)N=(4,4) WZW model (D2-brane), such that, its algebraic structure is a Lie bialgebra with one 2-cocycle. In this manner by using correspondence of 3-Lie bialgebra and Lie bialgebra (for this special 3-Lie algebra) one can construct M2-brane from a D2-brane and vice versa.Comment: 13 page

    The minimum-error discrimination via Helstrom family of ensembles and Convex Optimization

    Full text link
    Using the convex optimization method and Helstrom family of ensembles introduced in Ref. [1], we have discussed optimal ambiguous discrimination in qubit systems. We have analyzed the problem of the optimal discrimination of N known quantum states and have obtained maximum success probability and optimal measurement for N known quantum states with equiprobable prior probabilities and equidistant from center of the Bloch ball, not all of which are on the one half of the Bloch ball and all of the conjugate states are pure. An exact solution has also been given for arbitrary three known quantum states. The given examples which use our method include: 1. Diagonal N mixed states; 2. N equiprobable states and equidistant from center of the Bloch ball which their corresponding Bloch vectors are inclined at the equal angle from z axis; 3. Three mirror-symmetric states; 4. States that have been prepared with equal prior probabilities on vertices of a Platonic solid. Keywords: minimum-error discrimination, success probability, measurement, POVM elements, Helstrom family of ensembles, convex optimization, conjugate states PACS Nos: 03.67.Hk, 03.65.TaComment: 15 page

    'Treatment of the Sportsman's groin': British Hernia Society's 2014 position statement based on the Manchester Consensus Conference

    Get PDF
    <b>Introduction</b> The aim was to produce a multidisciplinary consensus to determine the current position on the nomenclature, definition, diagnosis, imaging modalities and management of Sportsman's groin (SG).<p></p> <b>Methods</b> Experts in the diagnosis and management of SG were invited to participate in a consensus conference held by the British Hernia Society in Manchester, UK on 11–12 October 2012. Experts included a physiotherapist, a musculoskeletal radiologist and surgeons with a proven track record of expertise in this field. Presentations detailing scientific as well as outcome data from their own experiences were given. Records were made of the presentations with specific areas debated openly.<p></p> <b>Results</b> The term ‘inguinal disruption’ (ID) was agreed as the preferred nomenclature with the term ‘Sportsman's hernia’ or ‘groin’ rejected, as no true hernia exists. There was an overwhelming agreement of opinion that there was abnormal tension in the groin, particularly around the inguinal ligament attachment. Other common findings included the possibility of external oblique disruption with consequent small tears noted as well as some oedema of the tissues. A multidisciplinary approach with tailored physiotherapy as the initial treatment was recommended with any surgery involving releasing the tension in the inguinal canal by various techniques and reinforcing it with a mesh or suture repair. A national registry should be developed for all athletes undergoing surgery.<p></p> <b>Conclusions</b> ID is a common condition where no true hernia exists. It should be managed through a multidisciplinary approach to ensure consistent standards and outcomes are achieved

    Enhancing extrusion die design efficiency through high-performance computing based optimization

    Get PDF
    This work presents a new computational framework for designing profile extrusion dies. The framework utilizes High-Performance Computing (HPC) resources to optimize parameterized die flow channels within a one-day time-frame, resulting in a significant reduction in the typical design time required for profile extrusion dies. By employing objective function-controlled convergence criteria, the framework achieved a 50% reduction in calculation time compared to runs where only the unknowns residuals were considered for the same purpose. Furthermore, it offers full optimization capability, requiring no user intervention once the CAD parameterization is complete. OpenFOAM and Dakota were employed for modeling and optimization, respectively. Fusion 360 and Onshape CAD software were used for drawing and parameterizing the flow channel. By leveraging HPC systems, the optimization framework can automatically test hundreds of alternative geometries within one day to find the optimal solution. This research demonstrates the feasibility and advantages of HPC-driven extrusion die optimization, which contributes to increased efficiency and competitiveness in the manufacturing industry

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021 : a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere

    Preterm Birth Associated With Group B Streptococcus Maternal Colonization Worldwide: Systematic Review and Meta-analyses.

    Get PDF
    Background: Preterm birth complications are the leading cause of deaths among children <5 years of age. Studies have suggested that group B Streptococcus (GBS) maternal rectovaginal colonization during pregnancy may be a risk factor for preterm delivery. This article is the fifth of 11 in a series. We aimed to assess the association between GBS maternal colonization and preterm birth in order to inform estimates of the burden of GBS. Methods: We conducted systematic literature reviews (PubMed/Medline, Embase, Latin American and Caribbean Health Sciences Literature [LILACS], World Health Organization Library Information System [WHOLIS], and Scopus) and sought unpublished data from investigator groups on the association of preterm birth (<37 weeks' gestation) and maternal GBS colonization (GBS isolation from vaginal, cervical, and/or rectal swabs; with separate subanalysis on GBS bacteriuria). We did meta-analyses to derive pooled estimates of the risk and odds ratios (according to study design), with sensitivity analyses to investigate potential biases. Results: We identified 45 studies for inclusion. We estimated the risk ratio (RR) for preterm birth with maternal GBS colonization to be 1.21 (95% confidence interval [CI], .99-1.48; P = .061) in cohort and cross-sectional studies, and the odds ratio to be 1.85 (95% CI, 1.24-2.77; P = .003) in case-control studies. Preterm birth was associated with GBS bacteriuria in cohort studies (RR, 1.98 [95% CI, 1.45-2.69]; P < .001). Conclusions: From this review, there is evidence to suggest that preterm birth is associated with maternal GBS colonization, especially where there is evidence of ascending infection (bacteriuria). Several biases reduce the chance of detecting an effect. Equally, however, results, including evidence for the association, may be due to confounding, which is rarely addressed in studies. Assessment of any effect on preterm delivery should be included in future maternal GBS vaccine trials

    Comparison of Intraoperative and Early Postoperative Outcomes of Caudal Versus Dorsal Penile Nerve Blocks for Outpatient Penile Surgeries

    Get PDF
    Objective To compare intraoperative and 1-hour postoperative outcomes in caudal versus dorsal penile nerve block (DPNB) patients undergoing penile surgeries. Material and Methods We performed a retrospective cohort study of males 3. Secondary outcomes were intraoperative/post-anesthesia care unit (PACU) narcotics, pre-incision anesthesia time, adjusted operating room charges and complications. We performed bivariate and multivariable analyses controlling for demographic/procedure characteristics and clustering by surgeon. Results Of 738 patients, (mean age 2.1 years) 74.1% had a caudal. DPNB patients were more likely to have a maximum pain score >3 (19.5% vs. 8.1%, p 3 (95% CI 1.7- 4.4, p<0.0001) and 5.2 times the odds of intraoperative/PACU narcotic administration (95% CI 3.3-8.1, p<0.0001). In multivariable analyses, caudal patients had longer pre-incision anesthesia time (27.9 ± 7.4 vs. 19.5 ± 6.6 minutes, p<0.0001) and higher adjusted operating room charges (12,760±4077vs.12,760 ± 4077 vs. 9,402 ± 3741, p=0.01). Conclusion Caudal blocks may offer a small advantage in the immediate postoperative period although cost-effectiveness is unproven

    Diagnostic accuracy of the Abbott ID NOW SARS-CoV-2 rapid test for the triage of acute medical admissions

    Get PDF
    Background: Decisions to isolate patients at risk of having coronavirus disease 2019 (COVID-19) in the emergency department (ED) must be rapid and accurate to ensure prompt treatment and maintain patient flow whilst minimising nosocomial spread. Reverse transcription polymerase chain reaction (RT-PCR) assays are too slow to achieve this, and near-patient testing is being used increasingly to facilitate triage. The ID NOW severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) assay is an isothermal nucleic acid amplification near-patient test which targets the RNA-dependent RNA-polymerase gene. Aim: To assess the diagnostic performance of ID NOW as a COVID-19 triage tool for medical admissions from the ED of a large acute hospital. Methods: All adult acute medical admissions from the ED between 31st March and 31st July 2021 with valid ID NOW and RT-PCR results were included. The diagnostic accuracy of ID NOW [sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV)] was calculated against the laboratory reference standard. Discrepant results were explored further using cycle threshold values and clinical data. Findings: Two percent (124/6050) of medical admissions were SARS-CoV-2 positive on RT-PCR. Compared with PCR, ID NOW had sensitivity and specificity of 83.1% [95% confidence interval (CI) 75.4–88.7] and 99.5% (95% CI 99.3–99.6), respectively. PPV and NPV were 76.9% (95% CI 69.0–83.2) and 99.6% (95% CI 99.5–99.8), respectively. The median time from arrival in the ED to ID NOW result was 59 min. Conclusion: ID NOW provides a rapid and reliable adjunct for the safe triage of patients with COVID-19, and can work effectively when integrated into an ED triage algorithm
    corecore