1,914 research outputs found
Practical rare event sampling for extreme mesoscale weather
Extreme mesoscale weather, including tropical cyclones, squall lines, and
floods, can be enormously damaging and yet challenging to simulate; hence,
there is a pressing need for more efficient simulation strategies. Here we
present a new rare event sampling algorithm called Quantile Diffusion Monte
Carlo (Quantile DMC). Quantile DMC is a simple-to-use algorithm that can sample
extreme tail behavior for a wide class of processes. We demonstrate the
advantages of Quantile DMC compared to other sampling methods and discuss
practical aspects of implementing Quantile DMC. To test the feasibility of
Quantile DMC for extreme mesoscale weather, we sample extremely intense
realizations of two historical tropical cyclones, 2010 Hurricane Earl and 2015
Hurricane Joaquin. Our results demonstrate Quantile DMC's potential to provide
low-variance extreme weather statistics while highlighting the work that is
necessary for Quantile DMC to attain greater efficiency in future applications.Comment: 18 pages, 9 figure
Property management strategies for institutional investors in the '90s
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1996.Includes bibliographical references (leaves 91-92).by John A. Willand.M.S
Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models
Relativistic heavy ion collisions are studied assuming that particles can be
described by a hadron gas in thermal and chemical equilibrium. The exact
conservation of baryon number, strangeness and charge are explicitly taken into
account. For heavy ions the effect arising from the neutron surplus becomes
important and leads to a substantial increase in e.g. the ratio.
A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure
First upper limit analysis and results from LIGO science data: stochastic background
I describe analysis of correlations in the outputs of the three LIGO
interferometers from LIGO's first science run, held over 17 days in August and
September of 2002, and the resulting upper limit set on a stochastic background
of gravitational waves. By searching for cross-correlations between the LIGO
detectors in Livingston, LA and Hanford, WA, we are able to set a 90%
confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting
on Gravitational Wave
HQET chromomagnetic interaction at two loops
We present the coefficient of the chromomagnetic interaction operator, the
only unknown coefficient in the Heavy Quark Effective Theory (HQET) lagrangian
up to the level, with the two-loop accuracy by matching scattering
amplitudes of an on-shell heavy quark in an external field in full QCD and
HQET, and obtain the two-loop anomalous dimension of this operator in HQET.Comment: 10 pages, LaTeX2e, 2 eps figures included. Revised discussion of
(n_f-1)-flavour HQET include
On the relation between effective supersymmetric actions in different dimensions
We make two remarks: (i) Renormalization of the effective charge in a
4--dimensional (supersymmetric) gauge theory is determined by the same graphs
and is rigidly connected to the renormalization of the metric on the moduli
space of the classical vacua of the corresponding reduced quantum mechanical
system. Supersymmetry provides constraints for possible modifications of the
metric, and this gives us a simple proof of nonrenormalization theorems for the
original 4-dimensional theory. (ii) We establish a nontrivial relationship
between the effective (0+1)-dimensional and (1+1)-dimensional Lagrangia (the
latter represent conventional
Kahlerian sigma models).Comment: 15 pages, 2 figure
The Primordial Gravitational Wave Background in String Cosmology
We find the spectrum P(w)dw of the gravitational wave background produced in
the early universe in string theory. We work in the framework of String Driven
Cosmology, whose scale factors are computed with the low-energy effective
string equations as well as selfconsistent solutions of General Relativity with
a gas of strings as source. The scale factor evolution is described by an early
string driven inflationary stage with an instantaneous transition to a
radiation dominated stage and successive matter dominated stage. This is an
expanding string cosmology always running on positive proper cosmic time. A
careful treatment of the scale factor evolution and involved transitions is
made. A full prediction on the power spectrum of gravitational waves without
any free-parameters is given. We study and show explicitly the effect of the
dilaton field, characteristic to this kind of cosmologies. We compute the
spectrum for the same evolution description with three differents approachs.
Some features of gravitational wave spectra, as peaks and asymptotic
behaviours, are found direct consequences of the dilaton involved and not only
of the scale factor evolution. A comparative analysis of different treatments,
solutions and compatibility with observational bounds or detection perspectives
is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra
On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance
The Mauna Loa Observatory record of direct-beam solar irradiance measurements
for the years 1958-2010 is analysed to investigate the variation of clear-sky
terrestrial insolation with solar activity over more than four solar cycles.
The raw irradiance data exhibit a marked seasonal cycle, extended periods of
lower irradiance due to emissions of volcanic aerosols, and a long-term
decrease in atmospheric transmission independent of solar activity. After
correcting for these effects, it is found that clear-sky terrestrial irradiance
typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a
change of the same order of magnitude as the variations of the total solar
irradiance above the atmosphere. An investigation of changes in the clear-sky
atmospheric transmission fails to find a significant trend with sunspot number.
Hence there is no evidence for a yet unknown effect amplifying variations of
clear-sky irradiance with solar activity.Comment: 16 pages, 7 figures, in press at Solar Physics; minor changes to the
text to match final published versio
- …
