102 research outputs found

    Associated hyperon-kaon production via neutrino-nucleus scattering

    Full text link
    We present the investigation of the neutrino-induced strangeness associated production on nuclei in the relativistic plane wave impulse approximation (RPWIA) framework at the intermediate neutrino energies. In this study, the elementary hadronic weak amplitudes are embedded inside the nuclear medium for the description of the exclusive channels of neutrino-nucleus interactions. These amplitudes are extracted using a model-dependent evaluation of the hadronic vertex using the Born term approximation in which the application of the Cabibbo V-A theory and SU(3) symmetry are assumed to be valid. The nuclear effects are included via the bound state wavefunctions of the nucleon obtained from the relativistic mean field (RMF) models. Two kinematics settings are used to examine various distributions of the differential cross section in the rest frame of the target nuclei. The numerical results are obtained for the neutrino-induced charged-current (CC) \,K+Λ\rm K^{^+}\Lambda-production on bound neutrons in 1s1/21s^{1/2} and 1p3/21p^{3/2} orbitals of 12^{12}C. The angular distributions are forward peaked under both kinematic settings, whereas under the quasifree setting the cross sections tend mimic the missing momentum distribution of the bound nucleon inside the nucleus.Comment: This article is submitted to International Journal of Modern Physics E (nuclear physics) and accepted on 31 October 20l

    Oral Migalastat HCl Leads to Greater Systemic Exposure and Tissue Levels of Active α-Galactosidase A in Fabry Patients when Co-Administered with Infused Agalsidase.

    Get PDF
    UnlabelledMigalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified.Trial registrationClinicalTrials.gov NCT01196871

    Sweet Potato Leaf Spot Diseases and Farmer’s Indigenous Knowledge in Parts of Western Kenya

    Get PDF
    Sweet potato (Ipomoea batatas L.) is a starchy, tuberous root with worldwide consumption. Production of sweet potatoes in Kenya is low due to disease constraints, such as fungal sweet potato leaf spot (SPLS), which is not well studied in the region. The infection results in reduced photosynthetic leaf area through premature defoliation and senescence. Effective management of SPLS presents an opportunity for increased production, improved food security and enhanced income. Farmers’ indigenous knowledge on plant disease control can provide a framework to refine current integrated management practices. This study evaluated SPLS occurrence, and assessed farmer’s indigenous knowledge. A multi-stage sampling technique was used to identify sampling plots and disease incidence and severity evaluated using quadrats. Disease incidence significantly (p< 0.05) ranged from 11% to 30.38% at Kakelo and Kamollo villages respectively, while severity was significantly(p < 0.05) highest at Kokwanyo (28.37%) and lowest at Rapogi (15.27%). Most farmers (90.91%) reported SPLS-like symptoms on their farms, although more females were able to differentiate between the diseases. Farmers’ education on sweet potato diseases such as SPLS is recommended to enhance disease management and boost yield

    Impact of Education on Knowledge and Practice of Kala Azar Preventive Measures among Seasonal and Migrant Agricultural Workers in Northwest Ethiopia.

    Get PDF
    Kala azar occurs among seasonal and migrant agricultural workers in northwest Ethiopia and accounts for almost 60% of the disease burden in the country. We conducted a quantitative study on the level of knowledge and practice of this vulnerable group in relation to kala azar transmission and acceptability of its vector control tools. A total of 403 workers were randomly selected from eight farms using a purposive sampling technique. Knowledge and practice scores were calculated based on 12 and 9 core questions, respectively. Binary logistic regression was used to identify factors associated with knowledge and practice. A large gap in knowledge of the disease and the vector was evident with 61.8%, 24.6%, and 13.6% of the workers having poor, moderate, and good levels of knowledge scores, respectively. Similarly, 95% of the seasonal workers reported poor level of use of protective measures against the bite of the sand fly vector. Good level of knowledge about kala azar and its sand fly vector was statistically associated with formal education (adjusted odds ratio [AOR] = 2.11; 95% CI = 1.17, 3.80; P < 0.05) and previous exposure to health education (AOR = 4.72; 95% CI = 1.99, 11.16; P < 0.001). Despite poor current knowledge and practice, a large proportion of the study participants showed interest in using vector control tools if made available, with 78% of the seasonal and migrant workers expressing some willingness to pay for different measures that can protect against sand fly bites. Therefore, we strongly recommend that comprehensive health education and vector control programs should be provided to these workers

    Resolving the Constrained Minimal and Next-to-Minimal Supersymmetric Standard Models

    Full text link
    We perform a detailed analysis of the next-to-minimal supersymmetric standard model (NMSSM), imposing the constraints of two-loop gauge coupling unification, universal soft supersymmetry breaking and the correct pattern of electroweak symmetry breaking. We compare our results with those for the minimal supersymmetric standard model (MSSM) using closely related techniques and, as far as possible, a common set of input and output variables. In general, in the constrained NMSSM, there are much stronger correlations between parameters than in the constrained MSSM, and we map out the allowed parameter space. We also give a detailed discussion of how to resolve the two models experimentally, concentrating primarily on the prospects at LEPII.Comment: 76 pages, latex, no macros, uuencoded figures included separately. This version (to appear in Phys. Rev. D) contains various minor change

    Oral abstracts of the 21st International AIDS Conference 18-22 July 2016, Durban, South Africa

    Get PDF
    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n=122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression.Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed.Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants.Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
    corecore