940 research outputs found
Suppressed reflectivity due to spin-controlled localization in a magnetic semiconductor
The narrow gap semiconductor FeSi owes its strong paramagnetism to
electron-correlation effects. Partial Co substitution for Fe produces a
spin-polarized doped semiconductor. The spin-polarization causes suppression of
the metallic reflectivity and increased scattering of charge carriers, in
contrast to what happens in other magnetic semiconductors, where magnetic order
reduces the scattering. The loss of metallicity continues progressively even
into the fully polarized state, and entails as much as a 25% reduction in
average mean-free path. We attribute the observed effect to a deepening of the
potential wells presented by the randomly distributed Co atoms to the majority
spin carriers. This mechanism inverts the sequence of steps for dealing with
disorder and interactions from that in the classic Al'tshuler Aronov approach -
where disorder amplifies the Coulomb interaction between carriers - in that
here, the Coulomb interaction leads to spin polarization which in turn
amplifies the disorder-induced scattering.Comment: 6 figures Submitted to PR
Hysteresis of Backflow Imprinted in Collimated Jets
We report two different types of backflow from jets by performing 2D special
relativistic hydrodynamical simulations. One is anti-parallel and
quasi-straight to the main jet (quasi-straight backflow), and the other is bent
path of the backflow (bent backflow). We find that the former appears when the
head advance speed is comparable to or higher than the local sound speed at the
hotspot while the latter appears when the head advance speed is slower than the
sound speed bat the hotspot. Bent backflow collides with the unshocked jet and
laterally squeezes the jet. At the same time, a pair of new oblique shocks are
formed at the tip of the jet and new bent fast backflows are generated via
these oblique shocks. The hysteresis of backflow collisions is thus imprinted
in the jet as a node and anti-node structure. This process also promotes
broadening of the jet cross sectional area and it also causes a decrease in the
head advance velocity. This hydrodynamic process may be tested by observations
of compact young jets.Comment: 9 pages, 5 figures, accepted for publication in ApJ
A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4
Inelastic neutron scattering performed at a spallation source is used to make
absolute measurements of the dynamic susceptibility of insulating La2CuO4 and
superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of
Sr doping on the magnetic excitations is to cause a large broadening in
wavevector and a substantial change in the spectrum of the local spin
fluctuations. Comparison of the two compositions reveals a new energy scale of
22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure
Scaling of magnetic fluctuations near a quantum phase transition
We use inelastic neutron scattering to measure the magnetic fluctuations in a
single crystal of the heavy fermion alloy CeCu_5.9Au_0.1 close to the
antiferromagnetic quantum critical point. The energy and temperature-dependent
spectra obey (E/T) scaling at Q near (1,0,0). The neutron data and earlier bulk
susceptibility are consistent with the form 1/X ~ f(Q)+(-iE+bT)^a, with an
anomalous exponent a=0.8. We confirm the earlier observation of quasi-low
dimensionality and show how both the magnetic fluctuations and the
thermodynamics can be understood in terms of a quantum Lifshitz point.Comment: Latex file with two postscript figure
Interacting Dirac Materials
We investigate the extent to which the class of Dirac materials in
two-dimensions provides general statements about the behavior of both fermionic
and bosonic Dirac quasiparticles in the interacting regime. For both
quasiparticle types, we find common features for the interaction induced
renormalization of the conical Dirac spectrum. We perform the perturbative
renormalization analysis and compute the self-energy for both quasiparticle
types with different interactions and collate previous results from the
literature whenever necessary. Guided by the systematic presentation of our
results in Table~\ref{Summary}, we conclude that long-range interactions
generically lead to an increase of the slope of the single-particle Dirac cone,
whereas short-range interactions lead to a decrease. The quasiparticle
statistics does not qualitatively impact the self-energy correction for
long-range repulsion but does affect the behavior of short-range coupled
systems, giving rise to different thermal power-law contributions. The
possibility of a universal description of the Dirac materials based on these
features is also mentioned.Comment: 19 pages and 12 Figures; Contains 6 Appendice
- …
