28 research outputs found
Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of Operating Field
Surgical skill assessment is important for surgery training and quality
control. Prior works on this task largely focus on basic surgical tasks such as
suturing and knot tying performed in simulation settings. In contrast, surgical
skill assessment is studied in this paper on a real clinical dataset, which
consists of fifty-seven in-vivo laparoscopic surgeries and corresponding skill
scores annotated by six surgeons. From analyses on this dataset, the clearness
of operating field (COF) is identified as a good proxy for overall surgical
skills, given its strong correlation with overall skills and high
inter-annotator consistency. Then an objective and automated framework based on
neural network is proposed to predict surgical skills through the proxy of COF.
The neural network is jointly trained with a supervised regression loss and an
unsupervised rank loss. In experiments, the proposed method achieves 0.55
Spearman's correlation with the ground truth of overall technical skill, which
is even comparable with the human performance of junior surgeons.Comment: MICCAI 201
Reactive power and voltage control in grid-connected wind farms: an online optimization based fast model predictive control approach
Optimal reactive power dispatch of wind power plant cluster considering static voltage stability for low-carbon power system
Hydrogeological and hydrogeochemical aspects of the Jalo area, Libya
Online access for this thesis was created in part with support from the Institute of Museum and Library Services (IMLS) administered by the Nevada State Library, Archives and Public Records through the Library Services and Technology Act (LSTA). To obtain a high quality image or document please contact the DeLaMare Library at https://unr.libanswers.com/ or call: 775-784-6945.Domestic, agricultural, and industrial needs drive the Jalo area of Libya to understand its groundwater aquifer system
Elliptical array antenna design based on particle swarm method using fuzzy decision rules
Early-, late-, and very late-term prediction of target lesion failure in coronary artery stent patients: An international multi-site study.
The main intervention for coronary artery disease is stent implantation. We aim to predict post-intervention target lesion failure (TLF) months before its onset, an extremely challenging task in clinics. This post-intervention decision support tool helps physicians to identify at-risk patients much earlier and to inform their follow-up care. We developed a novel machine-learning model with three components: a TLF predictor at discharge via a combination of nine conventional models and a super-learner, a risk score predictor for time-to-TLF, and an update function to manage the size of the at-risk cohort. We collected data in a prospective study from 120 medical centers in over 25 countries. All 1975 patients were enrolled during Phase I (2016–2020) and were followed up for five years post-intervention. During Phase I, 151 patients (7.6%) developed TLF, which we used for training. Additionally, 12 patients developed TLF after Phase I (right-censored). Our algorithm successfully classifies 1635 patients as not at risk (TNR = 90.23%) and predicts TLF for 86 patients (TPR = 52.76%), outperforming its training by identifying 33% of the right-censored patients. We also compare our model against five state of the art models, outperforming them all. Our prediction tool is able to optimize for both achieving higher sensitivity and maintaining a reasonable size for the at-risk cohort over time
