3,406 research outputs found
The Spin Structure of the Nucleon
This article reviews our present understanding of QCD spin physics: the
proton spin puzzle and new developments aimed at understanding the transverse
structure of the nucleon. We discuss present experimental investigations of the
nucleon's internal spin structure, the theoretical interpretation of the
different measurements and the open questions and challenges for future
investigation.Comment: Review, 43 pages, 23 figures, to appear in Reviews of Modern Physic
Imaging transverse electron focusing in semiconducting heterostructures with spin-orbit coupling
Transverse electron focusing in two-dimensional electron gases (2DEGs) with
strong spin-orbit coupling is revisited. The transverse focusing is related to
the transmission between two contacts at the edge of a 2DEG when a
perpendicular magnetic field is applied. Scanning probe microscopy imaging
techniques can be used to study the electron flow in these systems. Using
numerical techniques we simulate the images that could be obtained in such
experiments. We show that hybrid edge states can be imaged and that the
outgoing flux can be polarized if the microscope tip probe is placed in
specific positions.Comment: Contribution to the Book/Proceedings of the PITP Les Houches School
on "Quantum Magnetism" held on June, 2006. Final forma
Global Analysis of Fragmentation Functions for Eta Mesons
Fragmentation functions for eta mesons are extracted at next-to-leading order
accuracy of QCD in a global analysis of data taken in electron-positron
annihilation and proton-proton scattering experiments. The obtained
parametrization is in good agreement with all data sets analyzed and can be
utilized, for instance, in future studies of double-spin asymmetries for
single-inclusive eta production. The Lagrange multiplier technique is used to
estimate the uncertainties of the fragmentation functions and to assess the
role of the different data sets in constraining them.Comment: 11 pages, 8 figures, updated reference
Switching of +/-360deg domain wall states in a nanoring by an azimuthal Oersted field
We demonstrate magnetic switching between two domain wall vortex
states in cobalt nanorings, which are candidate magnetic states for robust and
low power MRAM devices. These domain wall (DW) or "twisted onion"
states can have clockwise or counterclockwise circulation, the two states for
data storage. Reliable switching between the states is necessary for any
realistic device. We accomplish this switching by applying a circular Oersted
field created by passing current through a metal atomic force microscope tip
placed at the center of the ring. After initializing in an onion state, we
rotate the DWs to one side of the ring by passing a current through the center,
and can switch between the two twisted states by reversing the current, causing
the DWs to split and meet again on the opposite side of the ring. A larger
current will annihilate the DWs and create a perfect vortex state in the rings.Comment: 5 pages, 5 figure
- …
