2,041 research outputs found
Computer simulation of field ion images of nanoporous structure in the irradiated materials
Computer simulation and interpretation of field ion microscopy images of ion irradiated platinum are discussed. Field ion microscopy technique provides direct precise atomic scale investigation of crystal lattice defects of atomically pure surface of material; at the same time it allows to analyze the structural defects in volume by controlled and sequential removal of surface atoms by electric field. Defects identification includes the following steps: at the first stage the type of crystalline structure and spatial orientation of crystallographic directions were determined. Thus, we obtain the data about exact position of all atoms of the given volume, i.e. the model image of an ideal crystal. At the second stage, the ion image was processed used the program to obtain the data about real arrangement of atoms of the investigated sample. At the third stage the program compares these two data sets, with a split-hair accuracy revealing a site of all defects in a material. Results of the quantitative analysis show that shape of nanopores are spherical or cylindrical, diameter on nanopores was varied from 1 to 5 run, their depth was fond to be from 1 to 9 nm. It was observed that nearly 40% of nanopores are concentrated in the subsurface layer 10 nm thick, the concentration of nanopores decreased linearly with the distance from the irradiated surface
It's just a feeling: why economic models do not explain
Julian Reiss correctly identified a trilemma about economic models: we cannot maintain that they are false, but nevertheless explain and that only true accounts explain. In this reply we give reasons to reject the second premise – that economic models explain. Intuitions to the contrary should be distrusted
Aromaticity in a Surface Deposited Cluster: Pd on TiO (110)
We report the presence of \sigma-aromaticity in a surface deposited cluster,
Pd on TiO (110). In the gas phase, Pd adopts a tetrahedral
structure. However, surface binding promotes a flat, \sigma-aromatic cluster.
This is the first time aromaticity is found in surface deposited clusters.
Systems of this type emerge as a promising class of catalyst, and so
realization of aromaticity in them may help to rationalize their reactivity and
catalytic properties, as a function of cluster size and composition.Comment: 4 pages, 3 figure
Examination of evidence for collinear cluster tri-partition
In a series of the experiments at different time-of-flight spectrometers of
heavy ions we have observed manifestations of a new at least ternary decay
channel of low excited heavy nuclei. Due to specific features of the effect, it
was called collinear cluster tri-partition (CCT). The experimental results
obtained initiated a number of theoretical articles dedicated to different
aspects of the CCT. We compare theoretical predictions with our experimental
data, only partially published so far. The model of one of the most populated
CCT modes that gives rise to the so called "Ni-bump" is discussed. Detection of
the 68-72Ni fission fragments with a kinetic energy E<25 MeV at the
mass-separator Lohengrin is proposed for an independent experimental
verification of the CCT.Comment: 16 pages, 14 figure
Absorption et désorption du dioxyde de souffre par des gouttes d'eau de fort diamètre en chute.
Cet article concerne l’absorption et la désorption du SO2 par des gouttes d’eau de diamètre supérieur à 1mm en chute libre dans un mélange air-SO2 à faible et moyenne concentrations. Dans ce cas, le transfert résulte du couplage des résistances interne et externe à la goutte. Dans la phase liquide, un modèle local basé sur la vitesse de frottement inter faciale et le diamètre de la goutte permet le calcul du coefficient de transfert interne kl. Le coefficient de transfert externe kg dans la phase gazeuse est déterminé à l’aide d’une expression plus classiqueAfin de valider le modèle, des investigations expérimentales sont menées en absorption et en désorption sur une colonne de 2.3 m de hauteur dans laquelle le temps de séjour des gouttes est de l’ordre de la seconde. Le présent modèle simule fort bien l’ensemble de ces expériences réalisées pour différents diamètres de goutte [2.04 ; 4.31] mm et différentes concentrations [100 ; 2000] ppm. Le modèle proposé est aussi comparé avec succès à des résultats expérimentaux de la littérature à faible et moyenne concentrations pour des temps de contact beaucoup plus grands.Son domaine d’application couvre donc désormais l’absorption et la désorption du SO2 pour des concentrations comprises entre quelques ppm et quelque %.Mass transfer in dispersed media is of interest to fields such as nuclear engineering, process engineering and environmental engineering. It occurs when two phases, not under chemical equilibrium, are in contact. Knowledge of mass transfer mechanisms in the case of gas absorption from and/or into droplets is necessary to understand the scavenging of trace gases in clouds, rain and wet scrubbers. Our studies focus on absorption and desorption phenomena involving free falling water droplets in a mixture of air and gas. For example, acid rain is formed when a drop of rain falls through an atmosphere contaminated with gaseous acid precursors. A similar phenomenon occurs in specific atmospheric scrubbers, where pollution is trapped at the source. In all cases, the transfer of trace gases from the air into the falling droplets is controlled by molecular diffusion and by convection outside and inside the drops.For droplets, falling inside a soluble gas medium, the main transfer resistance is located in the gas phase. A survey of published studies shows that a number of good numerical models exist, as well as experimental correlations for predictions of the mass transfer coefficient in the gas film. For the liquid phase controlled resistance, Saboni (1991) proposed a model based on local scales, interfacial liquid friction velocity and drop diameter. The model was validated experimentally by Amokrane et al. (1994). The experimental study and model validation in the case of sulfur dioxide absorption by water droplets falling through air with a high gas concentration (few %) has been described previously in detail by Amokrane et al. (1994).The purpose of the present article was to extend our previous model to predict SO2 absorption and desorption by droplets (1-5 mm) falling in air with a low gas concentration. In the liquid phase, a model based on local scales, interfacial liquid friction velocity and droplet size diameter was used. In the continuous gas phase a more classical model was applied. To support the model, two types of experiments were carried out. The first type was adapted to measure the absorption of gas by droplets of known diameter. A second set of experiments gave the desorption rate from droplets with an initial concentration of sulfur dioxide falling through SO2 -free air. Absorption occurred during the fall through a 2.3 m long column for various gas concentrations and for various droplet diameters. A sketch of the experimental equipment is presented schematically in Figure 1. It consists of a cylindrical column 2.3 m in height and 0.104 m in diameter. Before each experiment, a gas mixture with the desired SO2 concentration in air, ranging between 100 and 2000 ppm, was introduced into the column. The SO2 concentration was set at the desired value by regulating the volumetric flow rates of sulfur dioxide and air with calibrated rotameters. The gas concentration in the column was measured continuously by a chemical cell analyzer. The air temperature and humidity were continually measured at the top, in the middle and at the bottom of the column. They ranged from 18°C to 20°C and from 40% to 50%, respectively. Droplets were generated using a specific injector consisting of a demineralized water tank at the base of which identical thin needles were placed. In the case of the smallest droplets, seven needles, 300 µm in diameter, were used. For the largest droplets, one needle of about 1 mm was used. The artificial rain was started by exerting an overpressure in the tank and it was stopped by exerting a depression. This device allowed the generation of almost identical water drops at a controlled rate. Droplets fell with zero initial velocity. Their diameters were determined by collecting a known number of droplets and weighing them on a precision balance. The droplets were collected in a special glass cup placed at the bottom of the rain shaft. This collector initially contained a known volume of kerosene. The presence of this organic compound allowed the creation of a film to prevent additional absorption of SO2 during the experiment and natural desorption of sulfur after the experiment. An experiment consisted of dropping 10 to 20 mL of rain. This amount is enough to precisely measure the sulfur concentration.For reversible desorption, experimentation was undertaken directly in a lab atmosphere. For these experiments, the 4.31 mm diameter droplets free fall occurred over 16.3 m. Three intermediate levels were also examined with falling times varying from 0.7 to 2.4 s. The ambient temperature was measured in the surrounding area of both the injector and the collector and the maximum variation was 2°C. Various initial sulfurous acid concentrations were obtained as a result of various contact times of demineralized water with air-SO2 mixtures. Initial concentrations ranged from 0.5 10-3 mol·L-1 to 1.8 10-3 mol·L-1. In this case, the collector initially contained a known volume of hydrogen peroxide to immediately convert sulfurous acid into sulfuric acid. This avoided additional desorption of sulfurous acid during and after the experiments. In this case, the presence of the organic film was not necessary.The results achieved with the theoretical model were compared to the experimental results. The present model was successful in correlating the experimental results carried out for various droplet diameters ranging between 2.04 and 4.31 mm, and gas concentrations ranging between 100 and 2000 ppm. The model also compared successfully with experimental results from the literature in the case of much longer contact times. The applicability of the model thus covers the absorption and desorption of SO2 for concentrations ranging between ppm to a few %
Evaluation of the elastic properties and topography of leukocytes’ surface in patients with type 2 diabetes mellitus using atomic force microscope
The aim of study was to examine some morphometrical parameters (height, diameter) of the leukocytes (white blood cells - WBCs), their specific surface morphology (globular prominences and depression in WBCs) as well as their local elastic properties (Young’s modulus) in healthy persons and in patients with type 2 diabetes mellitus (T2DM) by means of the atomic force microscopy (AFM). Morphological and morphometrical parameters of human leukocytes were evaluated by AFM in tapped mod
Effect of electric field on the photoluminescence of polymer-inorganic nanoparticles composites
We report on the effect of electric field on the photoluminescence, PL, from
a composite consisting of a conjugated polymer mixed with zinc oxide
nanoparticles. We have found that in the absence of electric field PL emission
from the composite film has two maxima in the blue and green-yellow regions.
Application of a voltage bias to planar gold electrodes suppresses the
green-yellow emission and shifts the only PL emission maximum towards the blue
region. Current-voltage characteristics of the polymer-nanoparticles composite
exhibit the non-linear behavior typical of non-homogeneous polymer-inorganic
structures. Generation of excited states in the composite structure implies the
presence of several radiative recombination mechanisms including formation of
polymer-nanoparticle complexes including exciplex states and charge transfer
between the polymer and nanoparticle that can be controlled by an electric
field.Comment: 5 pages, 5 figures. accepted for publication in Solid State
Communication
- …
