14 research outputs found
Blood pressure reaction to negative stimuli: Insights from continuous recording and analysis
Individuals with a tendency toward abnormally enhanced cardiovascular responses to stress are at greater risk of developing essential hypertension later in life. Accurate profiling of continuous blood pressure (BP) reactions in healthy populations is crucial for understanding normal and abnormal emotional reaction patterns. To this end, we examined the continuous time course of BP reactions to aversive pictures among healthy participants. In two experiments, we showed participants negative and neutral pictures while simultaneously measuring their continuous BP and heart rate (HR) reactions. In this study, BP reactions were analyzed continuously, in contrast to previous studies, in which BP responses were averaged across blocks. To compare time points along a temporal continuum, we applied a multi-level B-spline model, which is innovative in the context of BP analysis. Additionally, HR was similarly analyzed in order to examine its correlation with BP. Both experiments revealed a similar pattern of BP reactivity and association with HR. In line with previous studies, a decline in BP and HR levels was found in response to negative pictures compared to neutral pictures. In addition, in both conditions, we found an unexpected elevation of BP toward the end of the stimuli exposure period. These findings may be explained by the recruitment of attention resources in the presence of negative stimuli, which is alleviated toward the end of the stimulation. This study highlights the importance of continuous measurement and analysis for characterizing the time course of BP reactivity to emotional stimuli
NGOs in Non-Compliance Mechanisms under Multilateral Environmental Agreements: From Tolerance to Recognition?
Can We Predict Who Will Respond to Neurofeedback? A Review of the Inefficacy Problem and Existing Predictors for Successful EEG Neurofeedback Learning
An eight-week mindfulness-based stress reduction (MBSR) workshop increases regulatory choice flexibility
Social decision makin
NGOs in Non-Compliance Mechanisms under Multilateral Environmental Agreements. From Tolerance to Recognition?
Differential Effects of Mutations on the Transport Properties of the Na<sup>+</sup>/H<sup>+</sup> Antiporter NhaA from Escherichia coli
Na+/H+ antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na+/H+ antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KDNa are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15–20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed
