1,929 research outputs found
Quantum interference phenomena in the Casimir effect
We propose a definitive test of whether plates involved in Casimir
experiments should be modeled with ballistic or diffusive electrons--a
prominent controversy highlighted by a number of conflicting experiments. The
unambiguous test we propose is a measurement of the Casimir force between a
disordered quasi-2D metallic plate and a three-dimensional metallic system at
low temperatures, in which disorder-induced weak localization effects modify
the well-known Drude result in an experimentally tunable way. We calculate the
weak localization correction to the Casimir force as a function of magnetic
field and temperature and demonstrate that the quantum interference suppression
of the Casimir force is a strong, observable effect. The coexistence of weak
localization suppression in electronic transport and Casimir pressure would
lend credence to the Drude theory of the Casimir effect, while the lack of such
correlation would indicate a fundamental problem with the existing theory. We
also study mesoscopic disorder fluctuations in the Casimir effect and estimate
the width of the distribution of Casmir energies due to disorder fluctuations.Comment: 9 pages, 9 figure
Non-analytic behavior of the Casimir force across a Lifshitz transition in a spin-orbit coupled material
We propose the Casimir effect as a general method to observe Lifshitz
transitions in electron systems. The concept is demonstrated with a planar
spin-orbit coupled semiconductor in a magnetic field. We calculate the Casimir
force between two such semiconductors and between the semiconductor and a metal
as a function of the Zeeman splitting in the semiconductor. The Zeeman field
causes a Fermi pocket in the semiconductor to form or collapse by tuning the
system through a topological Lifshitz transition. We find that the Casimir
force experiences a kink at the transition point and noticeably different
behaviors on either side of the transition. The simplest experimental
realization of the proposed effect would involve a metal-coated sphere
suspended from a micro-cantilever above a thin layer of InSb (or another
semiconductor with large -factor). Numerical estimates are provided and
indicate that the effect is well within experimental reach.Comment: 5 pages + 6 page supplement; 5 figure
Crowdsourcing Linked Data on listening experiences through reuse and enhancement of library data
Research has approached the practice of musical reception in a multitude of ways, such as the analysis of professional critique, sales figures and psychological processes activated by the act of listening. Studies in the Humanities, on the other hand, have been hindered by the lack of structured evidence of actual experiences of listening as reported by the listeners themselves, a concern that was voiced since the early Web era. It was however assumed that such evidence existed, albeit in pure textual form, but could not be leveraged until it was digitised and aggregated. The Listening Experience Database (LED) responds to this research need by providing a centralised hub for evidence of listening in the literature. Not only does LED support search and reuse across nearly 10,000 records, but it also provides machine-readable structured data of the knowledge around the contexts of listening. To take advantage of the mass of formal knowledge that already exists on the Web concerning these contexts, the entire framework adopts Linked Data principles and technologies. This also allows LED to directly reuse open data from the British Library for the source documentation that is already published. Reused data are re-published as open data with enhancements obtained by expanding over the model of the original data, such as the partitioning of published books and collections into individual stand-alone documents. The database was populated through crowdsourcing and seamlessly incorporates data reuse from the very early data entry phases. As the sources of the evidence often contain vague, fragmentary of uncertain information, facilities were put in place to generate structured data out of such fuzziness. Alongside elaborating on these functionalities, this article provides insights into the most recent features of the latest instalment of the dataset and portal, such as the interlinking with the MusicBrainz database, the relaxation of geographical input constraints through text mining, and the plotting of key locations in an interactive geographical browser
Higher-order Laguerre-Gauss interferometry for gravitational-wave detectors with in situ mirror defects compensation
The use of higher-order Laguerre-Gauss modes has been proposed to decrease the influence of thermal noise in future generation gravitational-wave interferometric detectors. The main obstacle for their implementation is the degeneracy of modes with same order, which highly increases the requirements on the mirror defects, beyond the state-of-the-art polishing and coating techniques. In order to increase the mirror surface quality, it is also possible to act in situ, using a thermal source, sent on the mirrors after a proper shaping. In this paper we present the results obtained on a tabletop Fabry-Pérot Michelson interferometer illuminated with a LG_(3,3) mode. We show how an incoherent light source can reduce the astigmatism of one of the mirrors, increasing the quality of the beam in one of the Fabry-Pérot cavities and then the contrast of the interferometer. The system has the potential to reduce more complex defects and also to be used in future gravitational-wave detectors using conventional Gaussian beams
Surgical site infection after caesarean section. Space for post-discharge surveillance improvements and reliable comparisons
Surgical site infections (SSI) after caesarean section (CS) represent a substantial health system concern. Surveying SSI has been associated with a reduction in SSI incidence. We report the findings of three (2008, 2011 and 2013) regional active SSI surveillances after CS in community hospital of the Latium region determining the incidence of SSI. Each CS was surveyed for SSI occurrence by trained staff up to 30 post-operative days, and association of SSI with relevant characteristics was assessed using binomial logistic regression. A total of 3,685 CS were included in the study. A complete 30 day post-operation follow-up was achieved in over 94% of procedures. Overall 145 SSI were observed (3.9% cumulative incidence) of which 131 (90.3%) were superficial and 14 (9.7%) complex (deep or organ/space) SSI; overall 129 SSI (of which 89.9% superficial) were diagnosed post-discharge. Only higher NNIS score was significantly associated with SSI occurrence in the regression analysis. Our work provides the first regional data on CS-associated SSI incidence, highlighting the need for a post-discharge surveillance which should assure 30 days post-operation to not miss data on complex SSI, as well as being less labour intensive
The Virgo O3 run and the impact of the environment
Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers
- …
