537 research outputs found
On-Site Wireless Power Generation
Conventional wireless power transfer systems consist of a microwave power
generator and a microwave power receiver separated by some distance. To realize
efficient power transfer, the system is typically brought to resonance, and the
coupled-antenna mode is optimized to reduce radiation into the surrounding
space. In this scheme, any modification of the receiver position or of its
electromagnetic properties results in the necessity of dynamically tuning the
whole system to restore the resonant matching condition. It implies poor
robustness to the receiver location and load impedance, as well as additional
energy consumption in the control network. In this study, we introduce a new
paradigm for wireless power delivery based on which the whole system, including
transmitter and receiver and the space in between, forms a unified microwave
power generator. In our proposed scenario the load itself becomes part of the
generator. Microwave oscillations are created directly at the receiver
location, eliminating the need for dynamical tuning of the system within the
range of the self-oscillation regime. The proposed concept has relevant
connections with the recent interest in parity-time symmetric systems, in which
balanced loss and gain distributions enable unusual electromagnetic responses.Comment: 10 pages, 13 figure
Nonlinear Control of Tunneling Through an Epsilon-Near-Zero Channel
The epsilon-near-zero (ENZ) tunneling phenomenon allows full transmission of
waves through a narrow channel even in the presence of a strong geometric
mismatch. Here we experimentally demonstrate nonlinear control of the ENZ
tunneling by an external field, as well as self-modulation of the transmission
resonance due to the incident wave. Using a waveguide section near cut-off
frequency as the ENZ system, we introduce a diode with tunable and nonlinear
capacitance to demonstrate both of these effects. Our results confirm earlier
theoretical ideas on using an ENZ channel for dielectric sensing, and their
potential applications for tunable slow-light structures
Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel
We discuss a novel kind of nonlinear coupler with one channel filled with a
negative index material (NIM). The opposite directionality of the phase
velocity and the energy flow in the NIM channel facilitates an effective
feedback mechanism that leads to optical bistability and gap soliton formation
Design of Electromagnetic Cloaks and Concentrators Using Form-Invariant Coordinate Transformations of Maxwell's Equations
The technique of applying form-invariant, spatial coordinate transformations
of Maxwell's equations can facilitate the design of structures with unique
electromagnetic or optical functionality. Here, we illustrate the
transformation-optical approach in the designs of a square electromagnetic
cloak and an omni-directional electromagnetic field concentrator. The
transformation equations are described and the functionality of the devices is
numerically confirmed by two-dimensional finite element simulations. The two
devices presented demonstrate that the transformation optic approach leads to
the specification of complex, anisotropic and inhomogeneous materials with well
directed and distinct electromagnetic behavior.Comment: submitted to "Photonics and Nanostructures", Special Issue "PECS
VII", Elsevie
Thermal invisibility based on scattering cancellation and mantle cloaking
Article accompagné d'un corrigendum : 10.1038/srep19321International audienceWe theoretically and numerically analyze thermal invisibility based on the concept of scattering cancellation and mantle cloaking. We show that a small object can be made completely invisible to heat diffusion waves, by tailoring the heat conductivity of the spherical shell enclosing the object. This means that the thermal scattering from the object is suppressed, and the heat flow outside the object and the cloak made of these spherical shells behaves as if the object is not present. Thermal invisibility may open new vistas in hiding hot spots in infrared thermography, military furtivity, and electronics heating reduction
Macroscopic invisibility cloaking of visible light
Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices
Full-wave invisibility of active devices at all frequencies
There has recently been considerable interest in the possibility, both
theoretical and practical, of invisibility (or "cloaking") from observation by
electromagnetic (EM) waves. Here, we prove invisibility, with respect to
solutions of the Helmholtz and Maxwell's equations, for several constructions
of cloaking devices. Previous results have either been on the level of ray
tracing [Le,PSS] or at zero frequency [GLU2,GLU3], but recent numerical [CPSSP]
and experimental [SMJCPSS] work has provided evidence for invisibility at
frequency . We give two basic constructions for cloaking a region
contained in a domain from measurements of Cauchy data of waves at \p
\Omega; we pay particular attention to cloaking not just a passive object, but
an active device within , interpreted as a collection of sources and sinks
or an internal current.Comment: Final revision; to appear in Commun. in Math. Physic
Influence of nationality on the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS)
OBJECTIVE: In answer to the call for improved accessibility of neuropsychological services to the international community, the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS; MS) was validated in multiple, non-English-speaking countries. It was created to monitor processing speed and learning in MS patients, including abbreviated versions of the Symbol Digit Modalities Test, California Verbal Learning Test, 2nd Edition, and the Brief Visuospatial Memory Test, Revised. The objective of the present study was to examine whether participant nationality impacts performance above and beyond common demographic correlates. METHOD: We combined published data-sets from Argentina, Brazil, Czech Republic, Iran, and the U.S.A. resulting in a database of 1,097 healthy adults, before examining the data via multiple regression. RESULTS: Nationality significantly predicted performance on all three BICAMS tests after controlling for age and years of education. Interactions among the core predictor variables were non-significant. CONCLUSION: We demonstrated that nationality significantly influences BICAMS performance and established the importance of the inclusion of a nationality variable when international norms for the BICAMS are constructed
- …
