85 research outputs found
Lunar navigation study, summary volume Final report, Jun. 1964 - May 1965
Lunar surface navigation and guidance study to implement lunar surface vehicle exploration mission
Lunar navigation study, sections 1 through 7 Final report, Jun. 1964 - May 1965
Lunar navigation analysis using passive nongyro, inertial navigation, and radio frequency technolog
Facet-dependent interactions of islet amyloid polypeptide with gold nanoparticles: Implications for fibril formation and peptide-induced lipid membrane disruption
A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnostics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We utilized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmission electron microscopy (TEM), and molecular dynamics (MD) simulations to systematically elucidate the underlying mechanism of the IAPP–AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and β-sheet), and TEM imaging suggested the acceleration of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP–AuNP interactions were initiated by the N-terminal domain (IAPP residues 1–19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption
Facet-dependent interactions of islet amyloid polypeptide with gold nanoparticles: implications for fibril formation and peptide-induced lipid membrane disruption
A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnos-tics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We uti-lized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmis-sion electron microscopy (TEM), and molecular dynamics (MD) simulations to systemati-cally elucidate the underlying mechanism of the IAPP−AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and β-sheet), and TEM imaging suggested the accelera-tion of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP−AuNP interactions were initiated by the N-terminal domain (IAPP residues 1−19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption
Photoacids and Photobases: Applications in functional dynamic systems
Brønsted photoacids and photobases are a unique class of molecules that undergo a major change in their pKa values between their ground and excited states, resulting in donating or accepting a proton, respectively, but only after light excitation. This property of photoacids/photobases makes them an attractive tool for light-gating various dynamic processes. Here, we review the use of this property to manipulate functional dynamic systems with light. We discuss how a proton transfer event that can happen upon light excitation from a photoacid to a chemical moiety of a certain system or, vice versa, from the system to a photobase, can result in a shift in the equilibrium of the system, resulting in some dynamicity. We detail various systems, including self-assembly processes of nanostructures, self-propulsion of droplets, catalysis for hydrogen evolution or CO2 capturing, nanotechnological devices based on enzymatic processes, and changes in proton-conducting ionophores and materials. We detail the basic guidelines for using Brønsted photoacids and photobases in a desired system and conclude with the current technological gaps in further using these molecules
The effect of solvent choice on the gelation and final hydrogel properties of Fmoc–diphenylalanine
Gels can be formed by dissolving Fmoc–diphenylalanine (Fmoc–PhePhe or FmocFF) in an organic solvent and adding water. We show here that the choice and amount of organic solvent allows the rheological properties of the gel to be tuned. The differences in properties arise from the microstructure of the fibre network formed. The organic solvent can then be removed post-gelation, without significant changes in the rheological properties. Gels formed using acetone are meta-stable and crystals of FmocFF suitable for X-ray diffraction can be collected from this gel
Robust Biosensor Based on Carbon Nanotubes/Protein Hybrid Electrolyte Gated Transistors
Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications
Recommended from our members
The role of lipid phase and temperature in proton barrier and proton migration on biological membranes
Biological membranes play a major role in diffusing protons on their surfaces between transmembrane protein complexes. The retention of protons on the membrane's surface is commonly described by a membrane-associated proton barrier that determines the efficiency of protons escaping from surface to bulk, which correlates with the proton diffusion (PD) dimensionality at the membrane's surface. Here, we explore the role of the membrane's biophysical properties and its ability to accept a proton from a light-triggered proton donor situated on the membrane's surface and to support PD around the probe. By changing lipid composition and temperature, while going through the melting point of the membrane, we directly investigate the role of the membrane phase in PD. We show that the proton transfer process from the proton donor to the membrane is more efficient in the liquid phase of the membrane than in the gel phase, with very low calculated activation energies that are also dependent on the lipid composition of the membrane. We further show that the liquid phase of the membrane allows higher dimensionalities (close to 3) of PD around the probe, indicating lower membrane proton barriers. In the gel phase, we show that the dimensionality of PD is lower, in some cases reaching values closer to 1, thus implying specific pathways for PD, which results in a higher proton recombination rate with the membrane-tethered probe. Computational simulations indicate that the change in PD between the two phases can be correlated to the membrane's ‘stiffness’ and ‘looseness’ at each phase
Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system
We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique
Lunar navigation study, sections 8 through 10 and appendices Final report, Jun. 1964 - May 1965
Component capabilities and requirements for lunar navigation concept
- …
