482 research outputs found
Superfluid and Pseudo-Goldstone Modes in Three Flavor Crystalline Color Superconductivity
We study the bosonic excitations in the favorite cubic three flavor
crystalline LOFF phases of QCD. We calculate in the Ginzburg-Landau
approximation the masses of the eight pseudo Nambu-Goldstone Bosons (NGB)
present in the low energy theory. We also compute the decay constants of the
massless NGB Goldstones associated to superfluidity as well as those of the
eight pseudo NGB. Differently from the corresponding situation in the
Color-Flavor-Locking phase, we find that meson condensation phases are not
expected in the present scenario.Comment: 10 pages, RevTeX4 class. Section IIIA enlarged, to appear on Phys.
Rev.
Cooling of a Compact Star with a LOFF Matter Core
Specific heat and neutrino emissivity due to direct URCA processes for quark
matter in the color superconductive Larkin-Ovchinnikov-Fulde-Ferrell (LOFF)
phase of Quantum-Chromodynamics have been evaluated. The cooling rate of
simplified models of compact stars with a LOFF matter core is estimated.Comment: 3 pages, 1 figure, to appear in the proceedings of the Helmoltz
International Summer School of Theoretical Physics on Dense Matter in Heavy
Ion Collisions and Astrophysics, JINR, Dubna, Russia, 21 Aug - 1 Sep 200
Neutrino emission from compact stars and inhomogeneous color superconductivity
We discuss specific heat and neutrino emissivity due to direct Urca processes
for quark matter in the color superconductive Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) phase of Quantum-Chromodynamics. We assume that the three light quarks
are in a color and electrically neutral state and interact by a four
fermion Nambu-Jona Lasinio coupling. We study a LOFF state characterized by a
single plane wave for each pairing. From the evaluation of neutrino emissivity
and fermionic specific heat, the cooling rate of simplified models of compact
stars with a quark core in the LOFF state is estimated.Comment: 16 pages, 5 figures, revtex4 style. Version accepted for publication
in Phys. Rev.
Albumin uptake in human podocytes: a possible role for the cubilin-amnionless (CUBAM) complex
Abstract Albumin re-uptake is a receptor-mediated pathway located in renal proximal tubuli. There is increasing evidence of glomerular protein handling by podocytes, but little is known about the mechanism behind this process. In this study, we found that human podocytes in vitro are committed to internalizing albumin through a receptor-mediated mechanism even after exposure to low doses of albumin. We show that these cells express cubilin, megalin, ClC-5, amnionless and Dab2, which are partners in the tubular machinery. Exposing human podocytes to albumin overload prompted an increase in CUBILIN, AMNIONLESS and CLCN5 gene expression. Inhibiting cubilin led to a reduction in albumin uptake, highlighting its importance in this mechanism. We demonstrated that human podocytes are committed to performing endocytosis via a receptor-mediated mechanism even in the presence of low doses of albumin. We also disclosed that protein overload first acts on the expression of the cubilin-amnionless (CUBAM) complex in these cells, then involves the ClC-5 channel, providing the first evidence for a possible role of the CUBAM complex in albumin endocytosis in human podocytes
Modularity map of the network of human cell differentiation
Cell differentiation in multicellular organisms is a complex process whose
mechanism can be understood by a reductionist approach, in which the individual
processes that control the generation of different cell types are identified.
Alternatively, a large scale approach in search of different organizational
features of the growth stages promises to reveal its modular global structure
with the goal of discovering previously unknown relations between cell types.
Here we sort and analyze a large set of scattered data to construct the network
of human cell differentiation (NHCD) based on cell types (nodes) and
differentiation steps (links) from the fertilized egg to a crying baby. We
discover a dynamical law of critical branching, which reveals a fractal
regularity in the modular organization of the network, and allows us to observe
the network at different scales. The emerging picture clearly identifies
clusters of cell types following a hierarchical organization, ranging from
sub-modules to super-modules of specialized tissues and organs on varying
scales. This discovery will allow one to treat the development of a particular
cell function in the context of the complex network of human development as a
whole. Our results point to an integrated large-scale view of the network of
cell types systematically revealing ties between previously unrelated domains
in organ functions.Comment: 32 pages, 7 figure
Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells
none2noAluminum alloys foams with homogeneous and regular open cells have been frequently proposed and used as support structures for catalytic applications. In this kind of application, the quality of produced metal foam assumes primary importance. This paper presents an application of a classifier algorithm to predict quality in the manufacturing process of aluminum alloy foams with homogeneous and regular open cells. A data analysis methodology of experimental data, which is based on Binary Gaussian Process Classification, is presented. The proposed method is a Bayesian classification method, which gets away from any assumptions about the relationship between process inputs (the geometric design parameters of the regular unit cells) and process output (probability to obtain defective foam). We demonstrate that the proposed methodology can provide an effective tool to derive a model for the prediction of quality. An investment casting process, via 3D printing of wax patterns, is considered throughout the paper. Despite this specific case study, the methodology can be exploited in different processes in which the assumptions of traditional statistical approaches could not be easily verified, e.g., additive manufacturing.openAnglani A.; Pacella M.Anglani, A.; Pacella, M
Bulk viscosity in 2SC quark matter
The bulk viscosity of three-flavor color-superconducting quark matter
originating from the nonleptonic process u+s u+d is computed. It is assumed
that up and down quarks form Cooper pairs while the strange quark remains
unpaired (2SC phase). A general derivation of the rate of strangeness
production is presented, involving contributions from a multitude of different
subprocesses, including subprocesses that involve different numbers of gapped
quarks as well as creation and annihilation of particles in the condensate. The
rate is then used to compute the bulk viscosity as a function of the
temperature, for an external oscillation frequency typical of a compact star
r-mode. We find that, for temperatures far below the critical temperature T_c
for 2SC pairing, the bulk viscosity of color-superconducting quark matter is
suppressed relative to that of unpaired quark matter, but for T >~ 10^(-3) T_c
the color-superconducting quark matter has a higher bulk viscosity. This is
potentially relevant for the suppression of r-mode instabilities early in the
life of a compact star.Comment: 18 pages + appendices (28 pages total), 8 figures; v3: corrected
numerical error in the plots; 2SC bulk viscosity is now larger than unpaired
bulk viscosity in a wider temperature rang
Nephrolithiasis, kidney failure and bone disorders in Dent disease patients with and without CLCN5 mutations
Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality
Strongly correlated quantum fluids are phases of matter that are
intrinsically quantum mechanical, and that do not have a simple description in
terms of weakly interacting quasi-particles. Two systems that have recently
attracted a great deal of interest are the quark-gluon plasma, a plasma of
strongly interacting quarks and gluons produced in relativistic heavy ion
collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic
gases confined in optical or magnetic traps. These systems differ by more than
20 orders of magnitude in temperature, but they were shown to exhibit very
similar hydrodynamic flow. In particular, both fluids exhibit a robustly low
shear viscosity to entropy density ratio which is characteristic of quantum
fluids described by holographic duality, a mapping from strongly correlated
quantum field theories to weakly curved higher dimensional classical gravity.
This review explores the connection between these fields, and it also serves as
an introduction to the Focus Issue of New Journal of Physics on Strongly
Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The
presentation is made accessible to the general physics reader and includes
discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics
special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold
Quantum Gases to QCD Plasmas"
(http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
- …
