2,876 research outputs found

    Maximum power, ecological function and efficiency of an irreversible Carnot cycle. A cost and effectiveness optimization

    Get PDF
    In this work we include, for the Carnot cycle, irreversibilities of linear finite rate of heat transferences between the heat engine and its reservoirs, heat leak between the reservoirs and internal dissipations of the working fluid. A first optimization of the power output, the efficiency and ecological function of an irreversible Carnot cycle, with respect to: internal temperature ratio, time ratio for the heat exchange and the allocation ratio of the heat exchangers; is performed. For the second and third optimizations, the optimum values for the time ratio and internal temperature ratio are substituted into the equation of power and, then, the optimizations with respect to the cost and effectiveness ratio of the heat exchangers are performed. Finally, a criterion of partial optimization for the class of irreversible Carnot engines is herein presented.Comment: 17 pages, 4 figures. Submitted to Energy Convers. Manag

    A halo bias function measured deeply into voids without stochasticity

    Full text link
    We study the relationship between dark-matter haloes and matter in the MIP NN-body simulation ensemble, which allows precision measurements of this relationship, even deeply into voids. What enables this is a lack of discreteness, stochasticity, and exclusion, achieved by averaging over hundreds of possible sets of initial small-scale modes, while holding fixed large-scale modes that give the cosmic web. We find (i) that dark-matter-halo formation is greatly suppressed in voids; there is an exponential downturn at low densities in the otherwise power-law matter-to-halo density bias function. Thus, the rarity of haloes in voids is akin to the rarity of the largest clusters, and their abundance is quite sensitive to cosmological parameters. The exponential downturn appears both in an excursion-set model, and in a model in which fluctuations evolve in voids as in an open universe with an effective Ωm\Omega_m proportional to a large-scale density. We also find that (ii) haloes typically populate the average halo-density field in a super-Poisson way, i.e. with a variance exceeding the mean; and (iii) the rank-order-Gaussianized halo and dark-matter fields are impressively similar in Fourier space. We compare both their power spectra and cross-correlation, supporting the conclusion that one is roughly a strictly-increasing mapping of the other. The MIP ensemble especially reveals how halo abundance varies with `environmental' quantities beyond the local matter density; (iv) we find a visual suggestion that at fixed matter density, filaments are more populated by haloes than clusters.Comment: Changed to version accepted by MNRA

    Clustering of red Galaxies near the Radio-loud Quasar 1335.8+2834 at z=1.1

    Get PDF
    We have obtained new deep optical and near-infrared images of the field of the radio-loud quasar 1335.8+2834 at z=1.086z=1.086 where an excess in the surface number density of galaxies was reported by Hutchings et al. [AJ, 106, 1324] from optical data. We found a significant clustering of objects with very red optical-near infrared colors, 4RK64 \lesssim R-K \lesssim 6 and 3IK53 \lesssim I-K \lesssim 5 near the quasar. The colors and magnitudes of the reddest objects are consistent with those of old (12 Gyr old at z=0) passively-evolving elliptical galaxies seen at z=1.1z=1.1, clearly defining a `red envelope' like that found in galaxy clusters at similar or lower redshifts. This evidence strongly suggests that the quasar resides in a moderately-rich cluster of galaxies (richness-class 0\geq 0). There is also a relatively large fraction of objects with moderately red colors (3.5<RK<4.53.5 < R-K < 4.5) which have a distribution on the sky similar to that of the reddest objects. They may be interpreted as cluster galaxies with some recent or on-going star formation.Comment: 14 pages text, 5 PostScript figures, 1 GIF figure, and 1 combined PS file. Accepted for ApJ, Letter

    Spectral gradients in central cluster galaxies: further evidence of star formation in cooling flows

    Get PDF
    We have obtained radial gradients in the spectral features D4000 and Mg2 for a sample of 11 central cluster galaxies (CCGs). The new data strongly confirm the correlations between line-strength indices and the cooling flow phenomenon found in our earlier study. We find that such correlations depend on the presence and characteristics of emission lines in the inner regions of the CCGs. CCGs in cooling flow clusters exhibit a clear sequence in the D4000-Mg2 plane, with a neat segregation depending on emission-line types and blue morphology. This sequence can be modelled, using stellar population models with a normal IMF, by a recent burst of star formation. In CCGs with emission lines, the gradients in the spectral indices are flat or positive inside the emission-line regions, suggesting the presence of young stars. Outside the emission-line regions, and in cooling flow galaxies without emission lines, gradients are negative and consistent with those measured in CCGs in clusters without cooling flows and giant elliptical galaxies. Index gradients measured exclusively in the emission-line region correlate with mass deposition rate. We have also estimated the radial profiles of the mass transformed into new stars which are remarkably parallel to the radial behaviour of the mass deposition rate. A large fraction (probably most) of the cooling flow gas accreted into the emission-line region is converted into stars. We discuss the evolutionary sequence suggested by McNamara (1997), in which radio triggered star formation bursts take place several times during the lifetime of the cooling flow. This scenario is consistent with the available observations.Comment: 19 pages, 18 PostScript figures, accepted for publication in MNRA
    corecore