17,459 research outputs found
A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
In this article we consider linear operators satisfying a generalized
commutation relation of a type of the Heisenberg-Lie algebra. It is proven that
a generalized inequality of the Hardy's uncertainty principle lemma follows.
Its applications to time operators and abstract Dirac operators are also
investigated
Meta-stable Vacuum in Spontaneously Broken N=2 Supersymmetric Gauge Theory
We consider an N=2 supersymmetric SU(2) \times U(1) gauge theory with N_f=2
massless flavors and a Fayet-Iliopoulos (FI) term. In the presence of the FI
term, supersymmetry is spontaneously broken at tree level (on the Coulomb
branch), leaving a pseudo-flat direction in the classical potential. This
vacuum degeneracy is removed once quantum corrections are taken into account.
Due to the SU(2) gauge dynamics, the effective potential exhibits a local
minimum at the dyon point, where not only supersymmetry but also U(1)_R
symmetry is broken, while a supersymmetric vacuum would be realized toward
infinity with the runaway behavior of the potential. This local minimum is
found to be parametrically long-lived. Interestingly, from a phenomenological
point of view, in this meta-stable vacuum the massive hypermultiplets inherent
in the theory play the role of the messenger fields in the gauge mediation
scenario, when the Standard Model gauge group is embedded into their flavor
symmetry.Comment: 27 pages, 11 figures, journal reference added, minor modifications in
the tex
Field evolution of the magnetic structures in ErTiO through the critical point
We have measured neutron diffraction patterns in a single crystal sample of
the pyrochlore compound ErTiO in the antiferromagnetic phase
(T=0.3\,K), as a function of the magnetic field, up to 6\,T, applied along the
[110] direction. We determine all the characteristics of the magnetic structure
throughout the quantum critical point at =2\,T. As a main result, all Er
moments align along the field at and their values reach a minimum. Using
a four-sublattice self-consistent calculation, we show that the evolution of
the magnetic structure and the value of the critical field are rather well
reproduced using the same anisotropic exchange tensor as that accounting for
the local paramagnetic susceptibility. In contrast, an isotropic exchange
tensor does not match the moment variations through the critical point. The
model also accounts semi-quantitatively for other experimental data previously
measured, such as the field dependence of the heat capacity, energy of the
dispersionless inelastic modes and transition temperature.Comment: 7 pages; 8 figure
Nonperturbative infrared effects for light scalar fields in de Sitter space
We study the phi^4 scalar field theory in de Sitter space using the 2PI
effective action formalism. This formalism enables us to investigate the
nonperturbative quantum effects. We use the mean field and gap equations and
calculate the physical mass and effective potential. We find that
nonperturbative infrared effects on de Sitter space produce a curvature-induced
mass and work to restore the broken Z_2 symmetry.Comment: 14 pages, 3 figures, section 2 revised, discussion in section 4
changed, results not change
Phase reduction of stochastic limit cycle oscillators
We point out that the phase reduction of stochastic limit cycle oscillators
has been done incorrectly in the literature. We present a correct phase
reduction method for oscillators driven by weak external white Gaussian noises.
Numerical evidence demonstrates that the present phase equation properly
approximates the dynamics of the original full oscillator system.Comment: 4 pages, 2 figure
Inelastic neutron scattering study on the resonance mode in an optimally doped superconductor LaFeAsOF
An optimally doped iron-based superconductor LaFeAsOF with
K has been studied by inelastic powder neutron scattering. The
magnetic excitation at \AA is enhanced below , leading to
a peak at meV as the resonance mode, in addition to the
formation of a gap at low energy below the crossover energy . The peak energy at \AA corresponds to in
good agreement with the other values of resonance mode observed in the various
iron-based superconductors, even in the high- cuprates. Although the
phonon density of states has a peak at the same energy as the resonance mode in
the present superconductor, the -dependence is consistent with the resonance
being of predominately magnetic origin.Comment: 4 pages, 5 Postscript figure
Synthesis of assembled nanocrystalline Si dots film through the Langmuir-Blodgett technique
Color Superconductivity in N=2 Supersymmetric Gauge Theories
We study vacuum structure of N=2 supersymmetric (SUSY) QCD, based on the
gauge group SU(2) with N_f=2 flavors of massive hypermultiplet quarks, in the
presence of non-zero baryon chemical potential (\mu). The theory has a
classical vacuum preserving baryon number symmetry, when a mass term, which
breaks N=2 SUSY but preserves N=1 SUSY, for the adjoint gauge chiral multiplet
(m_{ad}) is introduced. By using the exact result of N=2 SUSY QCD, we analyze
low energy effective potential at the leading order of perturbation with
respect to small SUSY breaking parameters, \mu and m_{ad}. We find that the
baryon number is broken as a consequence of the SU(2) strong gauge dynamics, so
that color superconductivity dynamically takes place at the non-SUSY vacuum.Comment: 15 pages, 9 figures, a figure and discussions added in Sec. 4,
version to appear in Phys. Rev.
- …
