411 research outputs found

    Photon tagged correlations in heavy ion collisions

    Full text link
    A detailed study of various two-particle correlation functions involving photons and neutral pions is presented in proton-proton and lead-lead collisions at the LHC energy. The aim is to use these correlation functions to quantify the effect of the medium (in lead-lead collisions) on the jet decay properties. The calculations are carried out at the leading order in QCD but the next-to-leading order corrections are also discussed. The competition between different production mechanisms makes the connection between the jet energy loss spectrum and the gamma-pi correlations somewhat indirect while the gamma-gamma correlations have a clearer relation to the jet fragmentation properties.Comment: 32 pages, 19 figures. Minor changes, published versio

    Deciphering the properties of the medium produced in heavy ion collisions at RHIC by a pQCD analysis of quenched large pp_{\perp} π0\pi^0 spectra

    Get PDF
    We discuss the question of the relevance of perturbative QCD calculations for analyzing the properties of the dense medium produced in heavy ion collisions. Up to now leading order perturbative estimates have been worked out and confronted with data for quenched large pp_{\perp} hadron spectra. Some of them are giving paradoxical results, contradicting the perturbative framework and leading to speculations such as the formation of a strongly interacting quark-gluon plasma. Trying to bypass some drawbacks of these leading order analysis and without performing detailed numerical investigations, we collect evidence in favour of a consistent description of quenching and of the characteristics of the produced medium within the pQCD framework.Comment: 10 pages, 3 figure

    Atomic Mass Dependence of Hadron Production in Deep Inelastic Scattering on Nuclei

    Full text link
    Hadron production in lepton-nucleus deep inelastic scattering is studied in an absorption model. In the proposed model, the early stage of hadronization in the nuclear medium is dominated by prehadron formation and absorption, controlled by flavor-dependent formation lengths and absorption cross sections. Computations for hadron multiplicity ratios are presented and compared with the HERMES experimental data for pions, kaons, protons and antiprotons. The mass-number dependence of hadron attenuation is shown to be sensitive to the underlying hadronization dynamics. Contrary to common expectations for absorption models, a leading term proportional to A^{2/3} is found. Deviations from the leading behavior arise at large mass-numbers and large hadron fractional momenta.Comment: 30 pages, 10 figures, v2: minor changes (legend in figs 5 & 6 is added), v3: additional explanations are added, v4: Version combines v3 and the erratum hep-ph/050803

    Space-time evolution of hadronization

    Get PDF
    Beside its intrinsic interest for the insights it can give into color confinement, knowledge of the space-time evolution of hadronization is very important for correctly interpreting jet-quenching data in heavy ion collisions and extracting the properties of the produced medium. On the experimental side, the cleanest environment to study the space-time evolution of hadronization is semi-inclusive Deeply Inelastic Scattering on nuclear targets. On the theoretical side, 2 frameworks are presently competing to explain the observed attenuation of hadron production: quark energy loss (with hadron formation outside the nucleus) and nuclear absorption (with hadronization starting inside the nucleus). I discuss recent observables and ideas which will help to distinguish these 2 mechanisms and to measure the time scales of the hadronization process.Comment: 6 pages, 4 figures. Based on talks given at "Hot Quarks 2006", Villasimius, Italy, May 15-20, 2006, and at the "XLIV internataional winter meeting on nuclear physics", Bormio, Italy, Jan 29 - Feb 5, 2006. To appear in Eur.Phys.J.

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    A Distributed Multilevel Force-directed Algorithm

    Full text link
    The wide availability of powerful and inexpensive cloud computing services naturally motivates the study of distributed graph layout algorithms, able to scale to very large graphs. Nowadays, to process Big Data, companies are increasingly relying on PaaS infrastructures rather than buying and maintaining complex and expensive hardware. So far, only a few examples of basic force-directed algorithms that work in a distributed environment have been described. Instead, the design of a distributed multilevel force-directed algorithm is a much more challenging task, not yet addressed. We present the first multilevel force-directed algorithm based on a distributed vertex-centric paradigm, and its implementation on Giraph, a popular platform for distributed graph algorithms. Experiments show the effectiveness and the scalability of the approach. Using an inexpensive cloud computing service of Amazon, we draw graphs with ten million edges in about 60 minutes.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    System size dependence of nuclear modification and azimuthal anisotropy of jet quenching

    Full text link
    We investigate the system size dependence of jet-quenching by analyzing transverse momentum spectra of neutral pions in Au+Au and Cu+Cu collisions at sNN\sqrt{s_{\textrm{NN}}} =200 GeV for different centralities. The fast partons are assumed to lose energy by radiating gluons as they traverse the plasma and undergo multiple collisions. The energy loss per collision, ϵ\epsilon, is taken as proportional to EE(where EE is the energy of the parton), proportional to E\sqrt{E}, or a constant depending on whether the formation time of the gluon is less than the mean path, greater than the mean free path but less than the path length, or greater than the path length of the partons, respectively. NLO pQCD is used to evaluate pion production by modifying the fragmentation function to account for the energy loss. We reproduce the nuclear modification factor RAAR_\textrm{AA} by treating ϵ\epsilon as the only free parameter, depending on the centrality and the mechanism of energy loss. These values are seen to explain the nuclear modification of prompt photons, caused by the energy lost by final state quarks before they fragment into photons. These also reproduce the azimuthal asymmetry of transverse momentum distribution for pions within a factor of two and for prompt photons in a fair agreement with experimental data.Comment: 26 pages, 17 figures. One more figure added. Discussion expanded. Typographical corrections done, several references added. To appear in Journal of Physics

    Charmonium suppression in p-A collisions at RHIC

    Full text link
    We discuss charmonium production in proton-nucleus collisions at RHIC energies under the assumption of xF and x2 scaling. We find that all the ambiguities due to energy loss are gone at this energy and therefore data will reveal the scaling law, if any. These p-A data will also be crucial to interpret nucleus-nucleus data with respect to a possible formation of a quark gluon plasma because the extrapolations for charmonium production from the present p-A data to RHIC energies, based on the two scaling laws, differ by a factor of four.Comment: 6 pages, 3 figures. New section on shadowing and energy loss, References adde

    Direct photons ~basis for characterizing heavy ion collisions~

    Full text link
    After years of experimental and theoretical efforts, direct photons become a strong and reliable tool to establish the basic characteristics of a hot and dense matter produced in heavy ion collisions. The recent direct photon measurements are reviewed and a future prospect is given.Comment: 8 pages, 8 figures, Invited plenary talk at Quark Matter 200

    Tomography of cold and hot QCD matter : tools and diagnosis

    Get PDF
    The probability distribution D(epsilon) in the energy loss incurred by incoming and outgoing hard quarks in a QCD medium is computed numerically from the BDMPS gluon spectrum. It is shown to follow an empirical log-normal behavior which allows us to give the quenching weight a simple analytic parameterization. The dependence of our results under the infrared and ultraviolet sensitivity of the gluon spectrum is investigated as well. Finally, as an illustration, we discuss and compare estimates for the quenching of hadron spectra in nuclear matter and in a quark-gluon plasma to HERA and RHIC preliminary data.Comment: 29 pages, 11 figures. Typo corrected in Eq.(4.17
    corecore