1,021 research outputs found

    Determination of the cross-field density structuring in coronal waveguides using the damping of transverse waves

    Full text link
    Time and spatial damping of transverse magnetohydrodynamic (MHD) kink oscillations is a source of information on the cross-field variation of the plasma density in coronal waveguides. We show that a probabilistic approach to the problem of determining the density structuring from the observed damping of transverse oscillations enables us to obtain information on the two parameters that characterise the cross-field density profile. The inference is performed by computing the marginal posterior distributions for density contrast and transverse inhomo- geneity length-scale using Bayesian analysis and damping ratios for transverse oscillations under the assumption that damping is produced by resonant absorption. The obtained distributions show that, for damping times of a few oscillatory periods, low density contrasts and short inho- mogeneity length scales are more plausible in explaining observations. This means that valuable information on the cross-field density profile can be obtained even if the inversion problem, with two unknowns and one observable, is a mathematically ill-posed problem.Comment: 5 pages, 3 figures, accepte

    Determination of Transverse Density Structuring from Propagating MHD Waves in the Solar Atmosphere

    Full text link
    We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic (MHD) transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale

    On the nature of transverse coronal waves revealed by wavefront dislocations

    Full text link
    Coronal waves are an important aspect of the dynamics of the plasma in the corona. Wavefront dislocations are topological features of most waves in nature and also of magnetohydrodynamic waves. Are there dislocations in coronal waves? The finding and explanation of dislocations may shed light on the nature and characteristics of the propagating waves, their interaction in the corona and in general on the plasma dynamics. We positively identify dislocations in coronal waves observed by the Coronal Multi-channel Polarimeter (CoMP) as singularities in the Doppler shifts of emission coronal lines. We study the possible singularities that can be expected in coronal waves and try to reproduce the observed dislocations in terms of localization and frequency of appearance. The observed dislocations can only be explained by the interference of a kink and a sausage wave modes propagating with different frequencies along the coronal magnetic field. In the plane transverse to the propagation, the cross-section of the oscillating plasma must be smaller than the spatial resolution, and the two waves result in net longitudinal and transverse velocity components that are mixed through projection onto the line of sight. Alfv\'en waves can be responsible of the kink mode, but a magnetoacoustic sausage mode is necessary in all cases. Higher (flute) modes are excluded. The kink mode has a pressure amplitude that is smaller than the pressure amplitude of the sausage mode, though its observed velocity is larger. This concentrates dislocations on the top of the loop. To explain dislocations, any model of coronal waves must include the simultaneous propagation and interference of kink and sausage wave modes of comparable but different frequencies, with a sausage wave amplitude much smaller than the kink one.Comment: 11 pages. 5 figures. Accepted for publication in A&

    Cuestiones sobre la debida discreción mental en el matrimonio canónico

    Get PDF

    Magnetohydrodynamic kink waves in two-dimensional non-uniform prominence threads

    Get PDF
    We analyse the oscillatory properties of resonantly damped transverse kink oscillations in two-dimensional prominence threads. The fine structures are modelled as cylindrically symmetric magnetic flux tubes with a dense central part with prominence plasma properties and an evacuated part, both surrounded by coronal plasma. The equilibrium density is allowed to vary non-uniformly in both the transverse and the longitudinal directions.We examine the influence of longitudinal density structuring on periods, damping times, and damping rates for transverse kink modes computed by numerically solving the linear resistive magnetohydrodynamic (MHD) equations. The relevant parameters are the length of the thread and the density in the evacuated part of the tube, two quantities that are difficult to directly estimate from observations. We find that both of them strongly influence the oscillatory periods and damping times, and to a lesser extent the damping ratios. The analysis of the spatial distribution of perturbations and of the energy flux into the resonances allows us to explain the obtained damping times. Implications for prominence seismology, the physics of resonantly damped kink modes in two-dimensional magnetic flux tubes, and the heating of prominence plasmas are discussed.Comment: 12 pages, 9 figures, A&A accepte

    Sobre la cosa juzgada en las causas matrimoniales

    Get PDF

    On the magnetism and dynamics of prominence legs hosting tornadoes

    Full text link
    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires understanding their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here, we analyze four consecutive spectropolarimetric scans of a prominence hosting tornadoes on its legs which help us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation probably related to the motion of the fibrils. Concerning the dynamics, we argue that 1) if rotation exists, it is intermittent, lasting no more than one hour, and 2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).Comment: accepted for publication in Ap

    Implementation of a low cost prototype for electrical impedance tomography based on the integrated circuit for body composition measurement AFE4300

    Get PDF
    Electrical impedance tomography (EIT) is a technique of image reconstruction of the electrical conductivity distribution in a tissue or region under observation. An electrical system for EIT comprises complex hardware and software modules, which are designed for a specific application which requires that the system to be able to detect conductivity variations within the study object. The Front-End for body composition measurement, AFE4300 from Texas Instruments allows a minimal implementation of an electrical impedance tomography system. It is the main device in the development of the EIT system presented in this paper, this device injects the current signal and measures the tensions generated on the study region boundary by 8 electrodes, the image reconstruction software was developed on the National Instruments platform Labview. The system includes a microcontroller PIC16F886 to configure the 8 channels for the definition of the patterns of injection and measurement of signals, also defines the current signal frequency and the bluetooth communication with the computer for the image reconstruction. The developed system was validated by a planar resistive phantom (CardiffEIT phantom), obtaining a stable voltage measurement every 50 ms per pair of electrodes, and a signal to noise ratio (SNR) maximum of 71.8 dB, for a current signal of 50 kHz. Additionally, tests were carried out in a saline tank with a concentration of 4 g/L, the developed system can simultaneously estimate the presence of conductive and non-conductive disturbances into the tank. CopyrightPeer ReviewedPostprint (published version
    corecore