2,304 research outputs found

    Competition Between Charge-Density Waves and Superconductivity in Striped Systems

    Full text link
    Switching on interchain coupling in a system of one-dimensional strongly interacting chains often leads to an ordered state. Quite generally, there is a competition between an insulating charge-density-wave and a superconducting state. In the case of repulsive interactions, charge-density wave usually wins over superconductivity. Here, we show that a suitable modulation in the form of a period 4 bond-centered stripe can reverse this balance even in the repulsive case and produce a superconducting state with relatively high temperature.Comment: Proceedings of SCES 04, 2 page

    On the correct continuum limit of the functional-integral representation for the four-slave-boson approach to the Hubbard model: Paramagnetic phase

    Full text link
    The Hubbard model with finite on-site repulsion U is studied via the functional-integral formulation of the four-slave-boson approach by Kotliar and Ruckenstein. It is shown that a correct treatment of the continuum imaginary time limit (which is required by the very definition of the functional integral) modifies the free energy when fluctuation (1/N) corrections beyond mean-field are considered. Our analysis requires us to suitably interpret the Kotliar and Ruckenstein choice for the bosonic hopping operator and to abandon the commonly used normal-ordering prescription, in order to obtain meaningful fluctuation corrections. In this way we recover the exact solution at U=0 not only at the mean-field level but also at the next order in 1/N. In addition, we consider alternative choices for the bosonic hopping operator and test them numerically for a simple two-site model for which the exact solution is readily available for any U. We also discuss how the 1/N expansion can be formally generalized to the four-slave-boson approach, and provide a simplified prescription to obtain the additional terms in the free energy which result at the order 1/N from the correct continuum limit.Comment: Changes: Printing problems (due to non-standard macros) have been removed, 44 page

    Half-Metallic Ferromagnetism and the spin polarization in CrO2_2

    Full text link
    We present electronic structure calculations in combination with local and non-local many-body correlation effects for the half-metallic ferromagnet CrO2_2. Finite-temperature Dynamical Mean Field Theory results show the existence of non-quasiparticle states, which were recently observed as almost currentless minority spin states near the Fermi energy in resonant scattering experients. At zero temperatures, Variational Cluster Approach calculations support the half-metallic nature of CrO2_2 as seen in superconducting point contact spectroscopy. The combination of these two techniques allowed us to qualitatively describe the spin-polarization in CrO2_2.Comment: 5 pages, 3 figure

    Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects

    Full text link
    Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA grand potential which employs a modified Lanczos algorithm and avoids integrations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes not accessible to full diagonalization. This is important for an improved treatment of short-range correlations, including correlations between Cooper pairs in particular. We investigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis of calculations for smaller clusters. It is shown that the energy barrier driving the phase separation decreases with increasing cluster size. This supports the conjecture that the ground state exhibits microscopic inhomogeneities rather than macroscopic phase separation. The evolution of the single-particle spectum as a function of doping is studied in addtion and the relevance of our results for experimental findings is pointed out.Comment: 7 pages, 6 figures, published versio

    Half-metallicity in NiMnSb: a Variational Cluster Approach with ab-initio parameters

    Get PDF
    Electron correlation effects in the half-metallic ferromagnet NiMnSb are investigated within a combined density functional and many-body approach. Starting from a realistic multi-orbital Hubbard-model including Mn and Ni-d orbitals, the many-body problem is addressed via the Variational Cluster Approach. The density of states obtained in the calculation shows a strong spectral weight transfer towards the Fermi level in the occupied conducting majority spin channel with respect to the uncorrelated case, as well as states with vanishing quasiparticle weight in the minority spin gap. Although the two features produce competing effects, the overall outcome is a strong reduction of the spin polarisation at the Fermi level with respect to the uncorrelated case. This result emphasizes the importance of correlation in this material.Comment: 8 pages, 6 figure

    Improving SPIHT-based Compression of Volumetric Medical Data

    Get PDF
    Volumetric medical data (CT,MR) are useful tools for diagnostic investigation however their usage may be made diffcult because of the amount of data to store or because of the duration of communication over a limited capacity channel. In order to code such information sources we present a progressive three dimensional image compression algorithm based on zerotree wavelet coder with arithmetic coding. We make use of a 3D separable biorthogonal wavelet transform and we extend the zerotree SPIHT algorithm to three dimensions. Moreover we propose some improvements to the SPIHT encoder in order to obtain a better rate distortion performance without increasing the computational complexity. Finally we propose an efficient context-based adaptive arithmetic coding which eliminates high order redundancy. The results obtained on progressive coding of a test CT volume are better than those presented in recent similar works both for the mean PSNR on the whole volume and for the PSNR homogeneity between various slices

    Crossover from Luttinger- to Fermi-liquid behavior in strongly anisotropic systems in large dimensions

    Full text link
    We consider the low-energy region of an array of Luttinger liquids coupled by a weak interchain hopping. The leading logarithmic divergences can be re-summed to all orders within a self-consistent perturbative expansion in the hopping, in the large-dimension limit. The anomalous exponent scales to zero below the one-particle crossover temperature. As a consequence, coherent quasiparticles with finite weight appear along the whole Fermi surface. Extending the expansion self-consistently to all orders turns out to be crucial in order to restore the correct Fermi-liquid behavior.Comment: Shortened version to appear in Physical Review Letter

    Non-quasiparticle states in Co2_2MnSi evidenced through magnetic tunnel junction spectroscopy measurements

    Get PDF
    We investigate the effects of electronic correlations in the full-Heusler Co2_2MnSi, by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements using Co2_2MnSi as electrode. Both experimental and theoretical results confirm the existence of so-called non-quasiparticle states and their crucial contribution to the finite-temperature spin polarisation in this material.Comment: Repalced Fig. 1. of PRL, 100, 086402 (2008), better k-space resolution for DOS around Fermi energ

    Inspiraling Halo Accretion Mapped in Lyman-α\alpha Emission around a z3z\sim3 Quasar

    Full text link
    In an effort to search for Lyα\alpha emission from circum- and intergalactic gas on scales of hundreds of kpc around z3z\sim3 quasars, and thus characterise the physical properties of the gas in emission, we have initiated an extensive fast-survey with the Multi Unit Spectroscopic Explorer (MUSE): Quasar Snapshot Observations with MUse: Search for Extended Ultraviolet eMission (QSO MUSEUM). In this work, we report the discovery of an enormous Lyα\alpha nebula (ELAN) around the quasar SDSS~J102009.99+104002.7 at z=3.164z=3.164, which we followed-up with deeper MUSE observations. This ELAN spans 297\sim297 projected kpc, has an average Lyα\alpha surface brightness SBLyα6.04×1018{\rm SB}_{\rm Ly\alpha}\sim 6.04\times10^{-18} erg s1^{-1} cm2^{-2} arcsec2^{-2} (within the 2σ2\sigma isophote), and is associated with an additional four, previously unknown embedded sources: two Lyα\alpha emitters and two faint active galactic nuclei (one Type-1 and one Type-2 quasar). By mapping at high significance the line-of-sight velocity in the entirety of the observed structure, we unveiled a large-scale coherent rotation-like pattern spanning 300\sim300 km s1^{-1} with a velocity dispersion of <270<270 km s1^{-1}, which we interpret as a signature of the inspiraling accretion of substructures within the quasar's host halo. Future multiwavelength data will complement our MUSE observations, and are definitely needed to fully characterise such a complex system. None the less, our observations reveal the potential of new sensitive integral-field spectrographs to characterise the dynamical state of diffuse gas on large scales in the young Universe, and thereby witness the assembly of galaxies.Comment: 39 pages with 27 figures and 5 appendices. Accepted to MNRA

    Variational description of the dimensional cross-over in the array of coupled one-dimensional conductors

    Full text link
    Variational wave function is proposed to describe electronic properties of an array of one-dimensional conductors coupled by transverse hopping and interaction. For weak or intermediate in-chain interaction the wave function has the following structure: Tomonaga-Luttinger bosons with momentum higher then some variational quantity \tilde\Lambda are in their ground state while other bosons (with |k|<\tilde\Lambda) form kinks -- fermion-like excitations of the Tomonaga-Luttinger boson field. Nature of the ground state for this quasiparticles can be determined by solving three dimensional effective hamiltonian. Since the anisotropy of the effective hamiltonian is small the use of the mean field theory is justified. For repulsive interaction possible phases are density wave and p-wave superconductivity. Our method allows us to calculate the low-energy part of different electronic Green's functions. In order to do that it is enough to apply standard perturbation theory technique to the effective hamiltonian. When the in-chain interaction is strong \tilde\Lambda vanishes and no fermionic excitation is present in the system. In this regime the dynamics is described by transversally coupled Tomonaga-Luttinger bosons
    corecore