46 research outputs found
An olfactory self-test effectively screens for COVID-19
International audienceAbstract Background Key to curtailing the COVID-19 pandemic are wide-scale screening strategies. An ideal screen is one that would not rely on transporting, distributing, and collecting physical specimens. Given the olfactory impairment associated with COVID-19, we developed a perceptual measure of olfaction that relies on smelling household odorants and rating them online. Methods Each participant was instructed to select 5 household items, and rate their perceived odor pleasantness and intensity using an online visual analogue scale. We used this data to assign an olfactory perceptual fingerprint, a value that reflects the perceived difference between odorants. We tested the performance of this real-time tool in a total of 13,484 participants (462 COVID-19 positive) from 134 countries who provided 178,820 perceptual ratings of 60 different household odorants. Results We observe that olfactory ratings are indicative of COVID-19 status in a country, significantly correlating with national infection rates over time. More importantly, we observe indicative power at the individual level (79% sensitivity and 87% specificity). Critically, this olfactory screen remains effective in participants with COVID-19 but without symptoms, and in participants with symptoms but without COVID-19. Conclusions The current odorant-based olfactory screen adds a component to online symptom-checkers, to potentially provide an added first line of defense that can help fight disease progression at the population level. The data derived from this tool may allow better understanding of the link between COVID-19 and olfaction
What Makes a Better Smeller?
Olfaction is often viewed as difficult, yet the empirical evidence suggests a different picture. A closer look shows people around the world differ in their ability to detect, discriminate, and name odors. This gives rise to the question of what influences our ability to smell. Instead of focusing on olfactory deficiencies, this review presents a positive perspective by focusing on factors that make someone a better smeller. We consider three driving forces in improving olfactory ability: one's biological makeup, one's experience, and the environment. For each factor, we consider aspects proposed to improve odor perception and critically examine the evidence; as well as introducing lesser discussed areas. In terms of biology, there are cases of neurodiversity, such as olfactory synesthesia, that serve to enhance olfactory ability. Our lifetime experience, be it typical development or unique training experience, can also modify the trajectory of olfaction. Finally, our odor environment, in terms of ambient odor or culinary traditions, can influence odor perception too. Rather than highlighting the weaknesses of olfaction, we emphasize routes to harnessing our olfactory potential
An olfactory self-test effectively screens for COVID-19
BACKGROUND: Key to curtailing the COVID-19 pandemic are wide-scale screening strategies. An ideal screen is one that would not rely on transporting, distributing, and collecting physical specimens. Given the olfactory impairment associated with COVID-19, we developed a perceptual measure of olfaction that relies on smelling household odorants and rating them online. METHODS: Each participant was instructed to select 5 household items, and rate their perceived odor pleasantness and intensity using an online visual analogue scale. We used this data to assign an olfactory perceptual fingerprint, a value that reflects the perceived difference between odorants. We tested the performance of this real-time tool in a total of 13,484 participants (462 COVID-19 positive) from 134 countries who provided 178,820 perceptual ratings of 60 different household odorants. RESULTS: We observe that olfactory ratings are indicative of COVID-19 status in a country, significantly correlating with national infection rates over time. More importantly, we observe indicative power at the individual level (79% sensitivity and 87% specificity). Critically, this olfactory screen remains effective in participants with COVID-19 but without symptoms, and in participants with symptoms but without COVID-19. CONCLUSIONS: The current odorant-based olfactory screen adds a component to online symptom-checkers, to potentially provide an added first line of defense that can help fight disease progression at the population level. The data derived from this tool may allow better understanding of the link between COVID-19 and olfaction
A mammalian blood odor component serves as an approach-avoidance cue across phylum border - from flies to humans
Contains fulltext :
184200.pdf (publisher's version ) (Open Access)8 p
Limitations in odour simulation may originate from differential sensory embodiment
Across diverse lineages, animals communicate using chemosignals, but only humans communicate about chemical signals. Many studies have observed that compared with other sensory modalities, communication about smells is relatively rare and not always reliable. Recent cross-cultural studies, on the other hand, suggest some communities are more olfactorily oriented than previously supposed. Nevertheless, across the globe a general trend emerges where olfactory communication is relatively hard. We suggest here that this is in part because olfactory representations are different in kind: they have a low degree of embodiment, and are not easily expressed as primitives, thereby limiting the mental manipulations that can be performed with them. New exploratory data from Dutch children (9–12 year-olds) and adults support that mental imagery from olfaction is weak in comparison with vision and audition, and critically this is not affected by language development. Specifically, while visual and auditory imagery becomes more vivid with age, olfactory imagery shows no such development. This is consistent with the idea that olfactory representations are different in kind from representations from the other senses
Wine Experts' Recognition of Wine Odors Is Not Verbally Mediated
Item does not contain fulltext15 p
Olfactory loss is an early and reliable marker for COVID-19
Detection of early and reliable symptoms is important in relation to limiting the spread of an infectious disease. For COVID-19, the most prevalent symptom is either losing or experiencing reduced olfactory functions. Anecdotal evidence suggests that olfactory dysfunction is also one of the earlier symptoms of COVID-19 but objective measures supporting this notion are currently missing. To determine whether olfactory dysfunction is an early sign of COVID-19, we assessed available longitudinal data from a web-based interface enabling individuals to test their sense of smell by rating the intensity of selected household odors. Individuals continuously used the interface to assess their olfactory functions and at each login, in addition to odor ratings, recorded their symptoms and result from potential COVID-19 test. A total of 205 COVID-19 positive individuals and 156 pseudo-randomly matched control individuals lacking positive test provided longitudinal data which enabled us to assess olfactory functions in relation to their test results date. We found that odor intensity ratings started to decline in the COVID-19 group as early as 6 days prior to test result date. Symptoms such as sore throat, aches, and runny nose appear around the same point in time; however, with a lower predictability of a COVID-19 diagnose. Our results suggest that olfactory dysfunction is an early symptom but does not appear before other related COVID-19 symptoms. Olfactory dysfunction is, however, more predictive of an COVID-19 diagnose than other early symptoms
Respiration Modulates Olfactory Memory Consolidation in Humans
Contains fulltext :
198790.pdf (publisher's version ) (Open Access)9 p
