176 research outputs found

    TOpic: rare and special cases, the real "Strange cases"

    Get PDF
    Introduction: The bladder hernia represents approximately 1-3% of all inguinal hernias, where patients aged more than 50 years have a higher incidence (10%). Many factors contribute to the development of a bladder hernia, including the presence of a urinary outlet obstruction causing chronic bladder distention, the loss of bladder tone, pericystitis, the perivesical bladder fat protrusion and the obesity

    Scale-Free model for governing universe dynamics

    Full text link
    We investigate the effects of scale-free model on cosmology, providing, in this way, a statistical background in the framework of general relativity. In order to discuss properties and time evolution of some relevant universe dynamical parameters (cosmographic parameters), such as H(t)H(t) (Hubble parameter), q(t)q(t) (deceleration parameter), j(t)j(t) (jerk parameter) and s(t)s(t) (snap parameter), which are well re-defined in the framework of scale-free model, we analyze a comparison between WMAP data. Hence the basic purpose of the work is to consider this statistical interpretation of mass distribution of universe, in order to have a mass density ρ\rho dynamics, not inferred from Friedmann equations, via scale factor a(t)a(t). This model, indeed, has been used also to explain a possible origin and a viable explanation of cosmological constant, which assumes a statistical interpretation without the presence of extended theories of gravity; hence the problem of dark energy could be revisited in the context of a classical probability distribution of mass, which is, in particular, for the scale-free model, P(k)kγP(k)\sim k^{-\gamma}, with 2<γ<32<\gamma<3. The Λ\LambdaCDM model becomes, with these considerations, a consequence of the particular statistics together with the use of general relativity.Comment: 7 pages, 4 figure

    Inverse Proximity Effects at Spin-Triplet Superconductor-Ferromagnet Interface

    Full text link
    We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO3_3, and the unconventional superconductor Sr2_2RuO4_4. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO3_3-Sr2_2RuO4_4 heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr2_2RuO4_4.Comment: 11 pages, 6 figure

    Enhanced Gilbert Damping in Re doped FeCo Films: A Combined Experimental and Theoretical Study

    Full text link
    The effects of rhenium doping in the range 0 to 10 atomic percent on the static and dynamic magnetic properties of Fe65Co35 thin films have been studied experimentally as well as with first principles electronic structure calculations focusing on the change of the saturation magnetization and the Gilbert damping parameter. Both experimental and theoretical results show that the saturation magnetization decreases with increasing Re doping level, while at the same time Gilbert damping parameter increases. The experimental low temperature saturation magnetic induction exhibits a 29 percent decrease, from 2.31 T to 1.64 T, in the investigated doping concentration range, which is more than predicted by the theoretical calculations. The room temperature value of the damping parameter obtained from ferromagnetic resonance measurements, correcting for extrinsic contributions to the damping, is for the undoped sample 0.0027, which is close to the theoretically calculated Gilbert damping parameter. With 10 atomic percent Re doping, the damping parameter increases to 0.0090, which is in good agreement with the theoretical value of 0.0073. The increase in damping parameter with Re doping is explained by the increase in density of states at Fermi level, mostly contributed by the spin-up channel of Re. Moreover, both experimental and theoretical values for the damping parameter are observed to be weakly decreasing with decreasing temperature.Comment: 13 pages, 8 figures, 5 tables, Materials for spin-logic circuit

    Dominant Folding Pathways of a WW Domain

    Full text link
    We investigate the folding mechanism of the WW domain Fip35 using a realistic atomistic force field by applying the Dominant Reaction Pathways (DRP) approach. We find evidence for the existence of two folding pathways, which differ by the order of formation of the two hairpins. This result is consistent with the analysis of the experimental data on the folding kinetics of WW domains and with the results obtained from large-scale molecular dynamics (MD) simulations of this system. Free-energy calculations performed in two coarse-grained models support the robustness of our results and suggest that the qualitative structure of the dominant paths are mostly shaped by the native interactions. Computing a folding trajectory in atomistic detail only required about one hour on 48 CPU's. The gain in computational efficiency opens the door to a systematic investigation of the folding pathways of a large number of globular proteins

    Respiration of \u3cem\u3eEscherichia coli\u3c/em\u3e in the Mouse Intestine

    Get PDF
    Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo3 oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine

    Coupling charge and topological reconstructions at polar oxide interfaces

    Full text link
    In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion-symmetry across the heterointerfaces. A notable example is the interface between polar and non-polar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way to the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wavefunctions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3_3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO3_3, a polar wide-bandgap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2_2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3_3/SrRuO3_3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction modifies the momentum-space Berry curvature in SrRuO3_3, driving a reorganization of the topological charges in the band structure. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.Comment: 5 pages main text (4 figures), 29 pages of supplementary informatio
    corecore