36 research outputs found

    Social features of online networks: the strength of intermediary ties in online social media

    Get PDF
    An increasing fraction of today social interactions occur using online social media as communication channels. Recent worldwide events, such as social movements in Spain or revolts in the Middle East, highlight their capacity to boost people coordination. Online networks display in general a rich internal structure where users can choose among different types and intensity of interactions. Despite of this, there are still open questions regarding the social value of online interactions. For example, the existence of users with millions of online friends sheds doubts on the relevance of these relations. In this work, we focus on Twitter, one of the most popular online social networks, and find that the network formed by the basic type of connections is organized in groups. The activity of the users conforms to the landscape determined by such groups. Furthermore, Twitter's distinction between different types of interactions allows us to establish a parallelism between online and offline social networks: personal interactions are more likely to occur on internal links to the groups (the weakness of strong ties), events transmitting new information go preferentially through links connecting different groups (the strength of weak ties) or even more through links connecting to users belonging to several groups that act as brokers (the strength of intermediary ties).Comment: 14 pages, 18 figure

    The Promoter of the pri-miR-375 Gene Directs Expression Selectively to the Endocrine Pancreas

    Get PDF
    microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved 768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to evaluate the functional significance of sequence blocks within the upstream fragment. 5′-RACE analysis was used for mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 5′-RACE analysis identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental processes

    Genomic features and computational identification of human microRNAs under long-range developmental regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent functional studies have demonstrated that many microRNAs (miRNAs) are expressed by RNA polymerase II in a specific spatiotemporal manner during the development of organisms and play a key role in cell-lineage decisions and morphogenesis. They are therefore functionally related to a number of key protein coding developmental genes, that form genomic regulatory blocks (GRBs) with arrays of highly conserved non-coding elements (HCNEs) functioning as long-range enhancers that collaboratively regulate the expression of their target genes. Given this functional similarity as well as recent zebrafish transgenesis assays showing that the miR-9 family is indeed regulated by HCNEs with enhancer activity, we hypothesized that this type of miRNA regulation is prevalent. In this paper, we therefore systematically investigate the regulatory landscape around conserved self-transcribed miRNAs (ST miRNAs), with their own known or computationally inferred promoters, by analyzing the hallmarks of GRB target genes. These include not only the density of HCNEs in their vicinity but also the presence of large CpG islands (CGIs) and distinct patterns of histone modification marks associated with developmental genes.</p> <p>Results</p> <p>Our results show that a subset of the conserved ST miRNAs we studied shares properties similar to those of protein-coding GRB target genes: they are located in regions of significantly higher HCNE/enhancer binding density and are more likely to be associated with CGIs. Furthermore, their putative promoters have both activating as well as silencing histone modification marks during development and differentiation. Based on these results we used both an elevated HCNE density in the genomic vicinity as well as the presence of a bivalent promoter to identify 29 putative GRB target miRNAs/miRNA clusters, over two-thirds of which are known to play a role during development and differentiation. Furthermore these predictions include miRNAs of the miR-9 family, which are the only experimentally verified GRB target miRNAs.</p> <p>Conclusions</p> <p>A subset of the conserved miRNA loci we investigated exhibits typical characteristics of GRB target genes, which may partially explain their complex expression profiles during development.</p

    MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Get PDF
    Contains fulltext : 98097.pdf (publisher's version ) (Open Access)BACKGROUND: MicroRNAs (miRNAs) play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. RESULTS: To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs). Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs) based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. CONCLUSIONS: Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters

    Provably correct on-chip communication

    No full text
    corecore