61 research outputs found
Recommended from our members
Dynamic Effects of Turbulent Crosswind on the Serviceability State of Vibrations of a Slender Arch Bridge Including Wind-Vehicle-Bridge Interaction
The use of high-performance materials in bridges is leading to structures that are more susceptible to wind- and traffic-induced vibrations due to the reduction in the weight and the increment of the slenderness in the deck. Bridges can experience considerable vibration due to both moving vehicles and wind actions that affect the comfort of the bridge users and the driving safety. This work explored the driving safety and comfort in a very slender arch bridge under turbulent wind and vehicle actions, as well as the comfort of pedestrians. A fully coupled wind–vehicle–bridge interaction model based on the direct integration of the system of dynamics was developed. In this model, the turbulent crosswind is represented by means of aerodynamic forces acting on the vehicle and the bridge. The vehicle is modeled as a multibody system that interacts with the bridge by means of moving contacts that also simulate road-surface irregularities. A user element is presented with generality and implemented using a general-purpose finite-element software package to incorporate the aeroelastic components of the wind forces, which allows modeling and solving of the wind–vehicle–bridge interaction in the time domain without the need for using the modal superposition technique. An extensive computational analysis program is performed on the basis of a wide range of turbulent crosswind speeds. The results show that bridge vibration is significantly affected by the crosswind in terms of peak acceleration and frequency content when the crosswind intensity is significant. The crosswind has more effect on the ride comfort of the vehicle in the lateral direction and, consequently, on its safety in terms of overturning accidents
Evaluation of Bridge Load Carrying Capacity Using Updated Finite Element Model and Nonlinear Analysis
Classification System for Semi-Rigid Beam-to-Column Connections
The current study attempts to recognise an adequate classification for a semi-rigid beam-to-column connection by investigating strength, stiffness and ductility. For this purpose, an experimental test was carried out to investigate the moment-rotation (M-theta) features of flush end-plate (FEP) connections including variable parameters like size and number of bolts, thickness of end-plate, and finally, size of beams and columns. The initial elastic stiffness and ultimate moment capacity of connections were determined by an extensive analytical procedure from the proposed method prescribed by ANSI/AISC 360-10, and Eurocode 3 Part 1-8 specifications. The behaviour of beams with partially restrained or semi-rigid connections were also studied by incorporating classical analysis methods. The results confirmed that thickness of the column flange and end-plate substantially govern over the initial rotational stiffness of of flush end-plate connections. The results also clearly showed that EC3 provided a more reliable classification index for flush end-plate (FEP) connections. The findings from this study make significant contributions to the current literature as the actual response characteristics of such connections are non-linear. Therefore, such semirigid behaviour should be used to for an analysis and design method
Evaluation of the role of transverse reinforcement in confining tension lap splices in high strength concrete
Development of field data for effective implementation of the mechanistic empirical pavement design procedure
- …
