5,525 research outputs found
A muon source based on plasma accelerators
The conceptual design of a compact source of GeV-class muons is presented,
based on a plasma based electron-gamma collider. Evaluations of muon flux,
spectra and brilliance are presented, carried out with ad-hoc montecarlo
simulations of the electron-gamma collisions. These are analyzed in the context
of a large spread of the invariant mass in the e-gamma interaction, due to the
typical characteristics of plasma self-injected GeV electron beams, carrying
large bunch charges with huge energy spread. The availability of a compact
point-like muon source, triggerable at nsec level, may open a completely new
scenario in the muon radiography application field
EuPRAXIA@SPARC_LAB: the high-brightness RF photo-injector layout proposal
At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness
RF injector and a plasma-based accelerator will drive a new multi-disciplinary
user-facility. The facility, that is currently under study at INFN-LNF
Laboratories (Frascati, Italy) in synergy with the EuPRAXIA collaboration, will
operate the plasma-based accelerator in the external injection configuration.
Since in this configuration the stability and reproducibility of the
acceleration process in the plasma stage is strongly influenced by the
RF-generated electron beam, the main challenge for the RF injector design is
related to generating and handling high quality electron beams. In the last
decades of R&D activity, the crucial role of high-brightness RF photo-injectors
in the fields of radiation generation and advanced acceleration schemes has
been largely established, making them effective candidates to drive
plasma-based accelerators as pilots for user facilities. An RF injector
consisting in a high-brightness S-band photo-injector followed by an advanced
X-band linac has been proposed for the EuPRAXIA@SPARC_LAB project. The electron
beam dynamics in the photo-injector has been explored by means of simulations,
resulting in high-brightness, ultra-short bunches with up to 3 kA peak current
at the entrance of the advanced X-band linac booster. The EuPRAXIA@SPARC_LAB
high-brightness photo-injector is described here together with performance
optimisation and sensitivity studies aiming to actual check the robustness and
reliability of the desired working point.Comment: 5 pages,5 figures, EAAC201
Quadrupole scan emittance measurements for the ELI-NP compton gamma source
The high brightness electron LINAC of the Compton
Gamma Source at the ELI Nuclear Physics facility in Roma-
nia is accelerating a train of 32 bunches with a nominal total
charge of
250 pC
and nominal spacing of
16 ns
. To achieve
the design gamma flux, all the bunches along the train must
have the designed Twiss parameters. Beam sizes are mea-
sured with optical transition radiation monitors, allowing a
quadrupole scan for Twiss parameters measurements. Since
focusing the whole bunch train on the screen may lead to
permanent screen damage, we investigate non-conventional
scans such as scans around a maximum of the beam size
or scans with a controlled minimum spot size. This paper
discusses the implementation issues of such a technique in
the actual machine layou
High intensity X/ γ photon beams for nuclear physics and photonics
In this manuscript we review the challenges of Compton back-scattering sources in advancing photon beam performances in the1−20MeVenergy range, underlining the design criteria bringing tomaximum spectral luminosity and briefly describing the main achieve-ments in conceiving and developing new devices (multi-bunch RF cav-ities and Laser recirculators) for the case of ELI-NP Gamma BeamSystem (ELI-NP-GBS)
Electron beam transfer line design for plasma driven Free Electron Lasers
Plasma driven particle accelerators represent the future of compact
accelerating machines and Free Electron Lasers are going to benefit from these
new technologies. One of the main issue of this new approach to FEL machines is
the design of the transfer line needed to match of the electron-beam with the
magnetic undulators. Despite the reduction of the chromaticity of plasma beams
is one of the main goals, the target of this line is to be effective even in
cases of beams with a considerable value of chromaticity. The method here
explained is based on the code GIOTTO [1] that works using a homemade genetic
algorithm and that is capable of finding optimal matching line layouts directly
using a full 3D tracking code.Comment: 9 Pages, 4 Figures. A related poster was presented at EAAC 201
A collimation system for ELI-NP Gamma Beam System - design and simulation of performance
The purpose of this study was to evaluate the performance and refine the design of the collimation system for the gamma radiation source (GBS) currently being realised at ELI-NP facility. The gamma beam, produced by inverse Compton scattering, will provide a tunable average energy in the range between 0.2 and 20 MeV, an energy bandwidth 0.5% and a flux of about 108 photons/s. As a result of the inverse Compton interaction, the energy of the emitted radiation is related to the emission angle, it is maximum in the backscattering direction and decreases as the angle increase [1,2]. Therefore, the required energy bandwidth can be obtained only by developing a specific collimation system of the gamma beam, i.e. filtering out the radiation emitted at larger angles. The angular acceptance of the collimation for ELI-NP-GBS must be continuously adjustable in a range from about 700 to 60 μrad, to obtain the required parameters in the entire energy range. The solution identified is a stack of adjustable slits, arranged with a relative rotation around the beam axis to obtain an hole with an approximately circular shape. In this contribution, the final collimation design and its performance evaluated by carrying out a series of detailed Geant4 simulations both of the high-energy and the low-energy beamline are presented
- …
