145 research outputs found

    Manipulation of both virus- and cell-specific factors is required for robust transient replication of a hepatitis C virus genotype 3a sub-genomic replicon

    Get PDF
    Hepatitis C virus (HCV) genotype (GT) 3 is the second most prevalent of the seven HCV genotypes and exhibits the greatest resistance to the highly potent, direct-acting antivirals (DAAs) that are currently in use. Previously a stable cell line harbouring the S52 GT3 subgenomic replicon (SGR) was established, but this SGR was unable to robustly replicate transiently. As transient SGRs are a critical tool in the development of DAAs, and the study of viral resistance, we sought to establish a transient SGR system based on S52. Next generation sequencing was used to identify putative culture-adaptive substitutions that had arisen during long term selection of the S52 SGR. A subset of these substitutions were built back into the S52 SGR in the context of a CpG/UpA-low luciferase reporter, with a single point mutation in NS4A conferring the greatest replication capability upon S52. Modification of the innate immune-sensing pathways of Huh7.5 hepatoma cells by expression of the parainfluenza virus type 5 V protein and SEC14L2 resulted in a further enhancement of S52 replication. Furthermore, this transiently-replicating SGR showed genotype-specific differences in sensitivity to two clinically-relevant NS5A DAAs. In conclusion, we report that a single substitution in NS4A, coupled with host cell modifications, enabled robust levels of transient replication by the GT3 S52 SGR. This system will have beneficial uses in both basic research into the unique aspects of GT3 biology and drug discovery

    Physical, chemical and kinetic factors affecting prion infectivity

    Get PDF
    The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process

    Calibration of the LIGO displacement actuators via laser frequency modulation

    Full text link
    We present a frequency modulation technique for calibration of the displacement actuators of the LIGO 4-km-long interferometric gravitational-wave detectors. With the interferometer locked in a single-arm configuration, we modulate the frequency of the laser light, creating an effective length variation that we calibrate by measuring the amplitude of the frequency modulation. By simultaneously driving the voice coil actuators that control the length of the arm cavity, we calibrate the voice coil actuation coefficient with an estimated 1-sigma uncertainty of less than one percent. This technique enables a force-free, single-step actuator calibration using a displacement fiducial that is fundamentally different from those employed in other calibration methods.Comment: 10 pages, 5 figures, submitted to Classical and Quantum Gravit

    A systematic investigation of production of synthetic prions from recombinant prion protein

    Get PDF
    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved

    Farmer’s Level Motivation on Sunflower Cultivation in a Rice Based Cropping Pattern of Patuakhali District

    Get PDF
    The aim of the study was mainly to determine and describe the extent of the motivation on sunflower cultivation and also explore relationship between the 12 selected characteristics of the farmers with motivation on sunflower cultivation. The study was designed with mixed method approach where, both qualitative and quantitative analyses are blended in a rational way to have a deeper understanding about research problems. The study was conducted in Dumki and Patuakhali Sadar Upazilla of Patuakhali district, Bangladesh. The whole period of the study was six months from 01 January to 30 June 2016. Simple random sampling technique was used to select 110 farmers engaged in sunflower cultivation. In addition case study, focus group discussions, Key informant interviews were used to collect data. Data was collected by face to face interviews. Data was analyzed using descriptive statistical measures and computer software like SPSS. Pearson’s Product Moment coefficient of correlation results showed that out of 12 independent variables, the correlation coefficients of 7 variables had positive and significant relationship with their motivation on sunflower cultivation. Multiple regression analysis showed that training experience, innovativeness, and sunflower cultivation knowledge had significant contribution towards motivation on sunflower cultivation. Training, Contact with various sources of information, Organizational participation of the farmers was vital predictors. These predictors need further investigations

    Optimization of xylanase production by filamentous fungi in solid state fermentation and scale-up to horizontal tube bioreactor

    Get PDF
    Five microorganisms, namely Aspergillus niger CECT 2700, A. niger CECT 2915, A. niger CECT 2088, Aspergillus terreus CECT 2808, and Rhizopus stolonifer CECT 2344, were grown on corncob to produce cell wall polysaccharide-degrading enzymes, mainly xylanases, by solid-state fermentation (SSF). A. niger CECT 2700 produced the highest amount of xylanases of 504±7 U/g dry corncob (dcc) after 3 days of fermentation. The optimization of the culture broth (5.0 g/L NaNO3, 1.3 g/L (NH4)2SO4, 4.5 g/L KH2PO4, and 3 g/L yeast extract) and operational conditions (5 g of bed loading, using an initial substrate to moistening medium of 1:3.6 (w/v)) allowed increasing the predicted maximal xylanase activity up to 2,452.7 U/g dcc. However, different pretreatments of materials, including destarching, autoclaving, microwave, and alkaline treatments, were detrimental. Finally, the process was successfully established in a laboratory-scale horizontal tube biore- actor, achieving the highest xylanase activity (2,926 U/g dcc) at a flow rate of 0.2 L/min. The result showed an overall 5.8-fold increase in xylanase activity after optimization of culture media, operational conditions, and scale-up.We are grateful to the Spanish Ministry of Science and Innovation for the financial support of this work (project CTQ2011-28967), which has partial financial support from the FEDER funds of the European Union; to the Leonardo da Vinci Programme for founding the stay of Felisbela Oliveira in Vigo University; to MAEC-AECID (Spanish Government) for the financial support for Perez-Bibbins, B. and to Spanish Ministry of Education, Culture and Sports for Perez-Rodriguez's FPU; and to Solla E. and Mendez J. (CACTI-University of Vigo) for their excellent technical assistance in microscopy

    Advanced Manufacturing Methods for High-Dose Inhalable Powders

    Get PDF
    Pulmonary drug delivery is governed by three main categories of forces: interparticle forces in the powder formulation, the dispersion forces during inhalation by the device, and deposition forces in the lungs. The interaction between fine inhalable powder particles of the active ingredient is governed by various types of forces, such as capillary forces, electrostatic forces, and van der Waals forces. The different types of inter-particle interactions influence the balance between powder dispersibility and agglomerate stability. The high level of cohesion forces arising from high surface energy of very fine powder hinders powder flowability, leading to issues of agglomeration. Therefore, there is a critical need for advanced manufacturing techniques to overcome the challenges of handling and manufacture of fine cohesive particles, particularly high-dose powders for inhalation. This review will focus on the challenges facing the formulation process of very fine inhalable powder, the various types of existing particle engineering techniques for high-dose powder inhalers, and the characterization techniques employed to analyse the powder characteristics required to meet the acceptance criteria of inhalable preparations

    Defining the role of cellular immune signatures in diagnostic evaluation of suspected tuberculosis

    Get PDF
    BACKGROUND: Diagnosis of paucibacillary tuberculosis (TB) including extrapulmonary TB is a significant challenge, particularly in high-income, low-incidence settings. Measurement of Mycobacterium tuberculosis (Mtb)-specific cellular immune signatures by flow cytometry discriminates active TB from latent TB infection (LTBI) in case-control studies; however, their diagnostic accuracy and clinical utility in routine clinical practice is unknown. METHODS: Using a nested case-control study design within a prospective multicenter cohort of patients presenting with suspected TB in England, we assessed diagnostic accuracy of signatures in 134 patients who tested interferon-gamma release assay (IGRA)-positive and had final diagnoses of TB or non-TB diseases with coincident LTBI. Cellular signatures were measured using flow cytometry. RESULTS: All signatures performed less well than previously reported. Only signatures incorporating measurement of phenotypic markers on functional Mtb-specific CD4 T cells discriminated active TB from non-TB diseases with LTBI. The signatures measuring HLA-DR+IFNγ + CD4 T cells and CD45RA-CCR7-CD127- IFNγ -IL-2-TNFα + CD4 T cells performed best with 95% positive predictive value (95% confidence interval, 90-97) in the clinically challenging subpopulation of IGRA-positive but acid-fast bacillus (AFB) smear-negative TB suspects. CONCLUSIONS: Two cellular immune signatures could improve and accelerate diagnosis in the challenging group of patients who are IGRA-positive, AFB smear-negative, and have paucibacillary TB

    Purification and characterization of \u3b2-glucosidase from Melanocarpus sp. MTCC 3922

    Get PDF
    This study reports the purification and characterization of \u3b2-glucosidase from a newly isolated thermophilic fungus, Melanocarpus sp. Microbial Type Culture Collection (MTCC) 3922. The molecular weight of \u3b2-glucosidase was determined to be ~ 92 and 102 kDa with SDS PAGE and gel filtration, respectively, and pI of ~ 4.1. It was optimally active at 60\ub0C and pH 6.0, though was stable at 50\ub0C and pH 5.0 - 6.0. The presence of DTT, mercaptoethanol and metal ions such as Na+, K+, Ca2+, Mg2+ and Zn2+ positively influenced the activity of \u3b2-glucosidase but the activity was inhibited in the presence of CuSO4. \u3b2-Glucosidase recognized pNP- \u3b2-glucopyranoside (pNPG) as the preferred substrate, and showed very low affinity for pNP- \u3b2-D-cellobioside. Km and Vmax for the hydrolysis of pNPG by \u3b2-glucosidase was calculated as 3.3 mM and 43.68 \u3bcmolmin-1mg protein-1, respectively and kcat was quantified as 4 x 103 min-1. \u3b2-Glucosidase activity was enhanced appreciably in the presence of alcohols (methanol and ethanol) moreover, purified \u3b2-glucosidase showed putative transglycosylation activity that was positively catalyzed in presence of methanol as an acceptor molecule

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow assay for antibody prevalence studies following vaccination: a diagnostic accuracy study

    Get PDF
    Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124; 95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62; 95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing
    corecore