239 research outputs found

    Dopants and defects in proton-conducting perovskites

    Get PDF
    Many doped perovskites show high proton conductivity at intermediate to high temperatures (500- 900 °C), which has opened possibilities for many prospected applications in energy conversion (fuel cells), and electrochemical devices. In a doped perovskite, e.g. BaCe1-xYxO3-y, oxygen vacancies are created by charge compensation, and can eventually react with air moisture to form structural protonic defects. The sluggish nature of the proton, which is practically invisible to most structural analyses, and poses enormous problems to quantum chemistry, has surely contributed to slow down the progress in the understanding of these materials: in fact, the conduction dynamics and its interplay with structure are still matter of debate. The kind of trivalent dopant and its size, and the doping level, have all been found to critically influence the conductivity: to date, however, no comprehensive model was developed, and no clear explanations exist between the chemical and dynamical properties. Here we present results collected in several EXAFS experiments on doped BaCeO3 and BaZrO3 spanning three years, on the Ba site, Ce site, and the dopant (yttrium, gadolinium, indium: the ionic sizes of these are respectively equal, larger and smaller than Ce4+) site. The local structures up to about 6 Å around each site are solved with state-of-the-art techniques employing both the GNXAS and FEFF approaches, revealing unique features and demonstrating that in this case the conventional diffraction techniques are not suited to unravel the complexity of doped crystals. In particular, the attention will be drawn on the local deviations from Vegard’s law, the local expansion/contraction as a function of hydration degree, the interplay between dopant and defects, and the chemical compatibility (Pearson absolute hardness) instead of ionic size matching. The EXAFS results are correlated with complementary information about the dynamics of protons and other defects (IR and neutron vibrational spectroscopy, QENS, ionic and electronic conductivity measurements)

    Indium doping of proton-conducting solid oxides

    Get PDF
    Solid oxides protonic conductors are prepared by doping the pure matrix compounds with cationic species. Barium cerate and barium zirconate are perovskite-like compounds, characterized by a network of corner-sharing MeO6 octahedra (Me=Ce, Zr). Barium lies in the cavities between octahedra. Insertion of trivalent species in the octahedral site involves the formation of charge- compensating oxygen vacancies, that can be filled by hydroxyls coming from dissociative water absorption. Then, proton delocalization among structural oxygens ensures conductivity. The most effective conductors are obtained by yttrium doping that, on the other hand, enters only in limited amounts in both BaZrO3 and BaCeO3, thus involving limited carrier concentration. Perovskites are affected by different drawbacks: barium cerate compounds are very sensitive to the acidic components present in the environment and in particular to CO2 that induces decomposition in barium carbonate and cerium oxide; barium zirconate, notwithstanding a very high bulk conductivity, is biased by high grain boundary resistivity. A possible alternative to perovskite-like compounds is constituted by fergusonite-type lanthanum niobate and lanthanum tantalate compounds, characterized by a tetrahedral coordination of Nb and Ta. These oxides present a very high chemical stability but very low carrier concentration, usually induced by Ca-doping the lanthanum site [1]. Among the different trivalent dopants, it was demonstrated by X-ray absorption spectroscopy that indium is able to enter in any composition in the perovskite network, thus providing a very high carrier concentration, even if with lower proton mobility. This property of indium was ascribed to its electronic structure and in particular to the low Pearson hardness, allowing this cation to fit in a hosting matrix with the least structural strain [2]. A preliminar attempt of exploiting indium for enhancing the carrier concentration of lanthanum niobate was carried out. The solid state synthesis involved amounts of the reactant simple oxides suitable to force indium doping of the niobium site. X-ray diffraction do not show significant amounts of secondary oxide phases

    Purification of a factor from human peritoneal fluid that is able to immobilize spermatozoa

    Get PDF
    Human peritoneal fluid has been claimed to influence sperm motility. This report gives evidence for the presence in mid-cycle peritoneal fluid of a protein-bound, lipidic (hydrophobic) component able to immobilize spermatozoa as a function of time. This component was extracted from molecular weight-sieving and ion-exchange/high pressure liquid chromatography (HPLC)-purified peritoneal fluid fractions by either chloroform/methanol or charcoal treatments; resuspension of the chloroform/methanol extract with BWW-buffer and subsequent testing on spermatozoa resulted in sperm immobilization. Sequential or step-down chromatographic procedures (molecular weight-sieving→cation-exchange→anion-exchange HPLC separations of native peritoneal fluid) and extensive dialysis against double distilled water allowed the purification of the sperm immobilizing factor, as evidenced by the shorter incubation times necessary for sperm immobilization. Furthermore, the active fraction was found to immobilize spermatozoa without affecting its viability. Separation of the chloroform/methanol extracted immobilizing fraction on thin layer chromatography under conditions for phospholipid detection allowed the identification of a characteristic band which, after re-extraction, was found to be the sperm immobilizing substance. This factor does not contain choline, ethanolamine or serine. These results suggest that some lipidic peritoneal fluid components may influence sperm motilit

    Effects of broadening and electron overheating in tunnel structures based on metallic clusters

    Full text link
    We study the influence of energy levels broadening and electron subsystem overheating in island electrode (cluster) on current-voltage characteristics of three-electrode structure. A calculation scheme for broadening effect in one-dimensional case is suggested. Estimation of broadening is performed for electron levels in disc-like and spherical gold clusters. Within the two-temperature model of metallic cluster and by using a size dependence of the Debye frequency the effective electron temperature as a function of bias voltage is found approximately. We suggest that the effects of broadening and electron overheating are responsible for the strong smoothing of current-voltage curves, which is observed experimentally at low temperatures in structures based on clusters consisting of accountable number of atoms.Comment: 8 pages, 5 figure

    X-ray absorption spectroscopy systematics at the tungsten L-edge

    Get PDF
    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W<sup>0</sup>(PMe<sub>3</sub>)<sub>6</sub>], [W<sup>II</sup>Cl<sub>2</sub>(PMePh<sub>2</sub>)<sub>4</sub>], [W<sup>III</sup>Cl<sub>2</sub>(dppe)<sub>2</sub>][PF<sub>6</sub>] (dppe = 1,2-bis(diphenylphosphino)ethane), [W<sup>IV</sup>Cl<sub>4</sub>(PMePh<sub>2</sub>)<sub>2</sub>], [W<sup>V</sup>(NPh)Cl<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>], and [W<sup>VI</sup>Cl<sub>6</sub>] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L<sub>3,2</sub>-edges and the L<sub>1</sub> rising-edge energy with metal Z<sub>eff</sub>, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>] and [W<sup>IV</sup>(mdt)<sub>2</sub>(CN)<sub>2</sub>]<sup>2–</sup> (mdt<sup>2–</sup> = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W<sup>IV</sup> species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z<sub>eff</sub> in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z<sub>eff</sub> or, as in the case of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>], add other subtlety by modulating the redox level of other ligands in the coordination sphere

    Multipurpose imaging-plate camera for in situ

    Full text link

    EXAFS and XANES structural characterization of bimetallic AuPd vapor derived catalysts

    Get PDF
    Using an innovative procedure known as metal vapor synthesis (MVS) to prepare bimetallic catalysts, starting from Au and Pd vapors, [AuPd] co-evaporated and [Au][Pd] separately evaporated bimetallic catalysts were achieved. After being tested, the catalytic activity and selectivity of the [AuPd] catalyst turned out to be higher than the [Au][Pd] ones. Using EXAFS spectroscopy it was shown that, in the [AuPd] samples, small bimetallic AuPd nanoparticles were present, having an Au rich core surrounded by an AuPd alloyed shell while in the [Au][Pd] sample there was the presence of monometallic Au and Pd nanoparticles showing some alloying only in the boundary regions. The EXAFS results were also qualitatively conrmed by the XANES spectra

    Bridging the Gap: Discrepancies Between Public Flood Risk Perceptions and FEMA Map Designations in the U.S.

    Get PDF
    Flooding, exacerbated by climate change and human activities, remains one of the most frequent and damaging natural disasters, posing challenges to risk perception and disaster management. Understanding public flood risk perceptions is critical for preparedness and designing effective mitigation policies. This study analyzes discrepancies between public flood risk perceptions—based on a national online survey of 923 respondents—and expert assessments from Federal Emergency Management Agency (FEMA) flood risk maps. Results revealed that floodplain residents perceive their risk lower than FEMA map designations. Public perceptions frequently diverge from expert assessments, influenced by socioeconomic factors, spatial context, and latent variables derived from Protection Motivation Theory (PMT). For instance, higher perceived self-efficacy was associated with either elevated perceived risk or increased uncertainty about flood risk, compared with expert assessments. Greater perceived susceptibility was linked to increased uncertainty. Respondents living near water bodies were more likely to downplay their flood risk. A lack of awareness about elevated terrain (necessary for avoiding rising flood waters) tends to downplay their flood risk. Older individuals exhibited less uncertainty about their property’s flood risk than younger counterparts. These findings highlight the need for targeted, place-based flood-risk communication strategies that address socio-cognitive and geographical factors. These strategies can reduce perception gaps, improve community preparedness and risk literacy, and strengthen community resilience to flooding. Furthermore, the potential underestimation of flood risk in FEMA flood maps indicates the need for improved map accuracy and localized risk assessments to align public perceptions with expert flood-risk maps

    Anomalous Wide-Angle X-ray Scattering Apparatus on the GILDA Beamline at the ESRF

    Get PDF
    The experimental apparatus for anomalous wide-angle X-ray scattering (AWAXS) on the GILDA beamline at the ESRF is described. The main features are the high beam stability and reproducibility which allow anomalous scattering effects to be resolved also on dilute elements, the large spectral range which allows AWAXS experiments at the K edges of heavy elements, and the use of a high-efficiency detection system. The apparatus has been tested in extreme conditions by performing AWAXS experiments at the Eu K edge in Eu-doped Sr metaphosphate glasses
    corecore