3,433 research outputs found
Ecojusticia, equidad y ética: retos para la orientación educativa y profesional
In social and environmental terms we live in precarious and uncertain times, where not only the sustainability of the
planet rests in the balance, but also that of human existence. Many nation-states around the world talk of the
importance of social cohesion, and are aware of the threat of environmental degradation, climate change, and
ecological well-being. However, the dominating global policy discourse, particularly championed in the West, is
located within a delimiting neo/liberal political framework. With a few noticeable exceptions, the influence of
neo/liberal thinking continues to flourish in the contemporary career literature where there has been little deep
critical engagement with the discourse of capitalist economics and how these impact human and environmental
well-being. Often caught up in market-led discourses, and captured by the notion that ‘work sets you free’,
educational and career guidance has been located within an uncritical economic frame. Its energies tend to be
directed towards the preparation of individuals to make ‘good’ educational and occupational choices, underpinned
by the need for ‘clients’ to acquire the skills and competencies demanded by employers (and the economy)
(Bengtsson, 2011; Irving, 2018). The disjuncture between educational and career guidance and social and
environmental justice (i.e. ecojustice) has rarely been breached. In this article, we seek to disrupt dominant
discourses of the market that currently permeates thinking in education by identifying how an ecojustice
perspective provides a forward looking and equitable foundation for educational and career guidance.En términos sociales y ambientales, vivimos en tiempos precarios e inciertos, donde no solo la sostenibilidad del
planeta está en juego, sino también la de la existencia humana. Muchos estados-nación de todo el mundo hablan de
la importancia de la cohesión social y son conscientes de la degradación ambiental, el cambio climático y la amenaza
al bienestar ecológico y social. Sin embargo, el discurso dominante de la política global, particularmente defendido
en Occidente, se sitúa dentro de un marco político neoliberal. Con algunas notables excepciones, la influencia del
pensamiento neoliberal continúa siendo hegemónico en el campo de la educación y de la orientación profesional,
donde en términos generales ha habido poco compromiso crítico profundo con el discurso de la economía capitalista
y cómo este impacta sobre el bienestar humano y ambiental. A menudo atrapada en discursos dirigidos por el mercado
y por la noción de que "el trabajo nos hace libres", la orientación educativa y profesional se ha ubicado dentro de un
marco económico acrítico. Se tiende a preparar a los individuos para tomar "buenas" decisiones educativas y
ocupacionales, respaldadas por la necesidad de que adquieran las habilidades y competencias exigidas por los
empleadores (y la economía) (Bengtsson, 2011; Irving, 2018). La disyuntiva entre la orientación educativa y
profesional y la justicia social y ambiental (la ecojusticia) rara vez se ha abordado. En este artículo cuestionamos los
discursos dominantes del mercado que actualmente impregnan el pensamiento en educación, y proponemos la
adopción de una perspectiva de ecojusticia que proporciona una guía para el futuro y contribuye a promover la
equidad desde la orientación educativa y profesional
Recommended from our members
The influence of Widmanstätten ferrite, martensite and grain boundary carbides on the strength and impact behaviour of high Al (0.2%) and Nb containing hot rolled steels
The influence of Al and Nb on the strength and impact behaviour of hot rolled 0.06%C, 1.4%Mn steels has been determined after hot rolling to 15 and 30 mm thick plate. When 0.16%Al was added to the plain C-Mn steel, the impact behaviour significantly improved even though Widmanstätten ferrite (WF) was present. This improvement was due to refinement of the grain boundary carbides and removing the N from solution as AlN. The hot rolled steels all contained WF but when Nb was added more WF formed as well as MA giving poor impact behaviour. Reducing the hardenability from that shown in previous work by decreasing C from 0.1 to 0.06%, Nb from 0.03 to 0.02%, and cooling rate from 33 to 17 K/min had no effect in improving the impact performance of hot rolled Nb steels. To ensure optimum properties not only is it necessary to reduce the hardenability, but WF formation must be discouraged by having a high Ar3. This can only be presently achieved by refining the austenite grain size via control rolling the Nb containing steels; the benefit of adding Al can then, readily be seen. Suggestions are made as to how this might be achieved for hot rolling
The implications of a changing climate on agricultural land classification in England and Wales
The agricultural land classification (ALC) of England and Wales is a formal method of assessing the quality of agricultural land and guiding future land use. It assesses several soil, site and climate criteria and classifies land according to whichever is the most limiting. A common approach is required for calculating the necessary agroclimatic parameters over time in order to determine the effects of changes in the climate on land grading. In the present paper, climatic parameters required by the ALC classification have been re-calculated from a range of primary climate data, available from the Meteorological Office's UKCP09 historical dataset, provided as 5 km rasters for every month from 1914 to 2000. Thirty-year averages of the various agroclimatic properties were created for 1921–50, 1931–60, 1941–70, 1951–80, 1961–90 and 1971–2000. Soil records from the National Soil Inventory on a 5 km grid across England and Wales were used to determine the required soil and site parameters for determining ALC grade. Over the 80-year period it was shown that the overall climate was coolest during 1951–80. However, the area of land estimated in retrospect as ‘best and most versatile (BMV) land’ (Grades 1, 2 and 3a) probably peaked in the 1951–80 period as the cooler climate resulted in fewer droughty soils, more than offsetting the land which was downgraded by the climate being too cold. Overall there has been little change in the proportions of ALC grades among the six periods once all 10 factors (climate, gradient, flooding, texture, depth, stoniness, chemical, soil wetness, droughtiness and erosion) are taken into account. This is because it is rare for changes in climate variables all to point in the same direction in terms of ALC. Thus, a reduction in rainfall could result in higher grades in wetter areas but lead to lower classification in drier areas
Quelles aires protégées pour l'Afrique de l'Ouest ? : conservation de la biodiversité et développement
C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy
Introduction
Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage.
Results and Conclusions
In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy
Saharan dust and ice nuclei over Central Europe
Surface measurements of aerosol and ice nuclei (IN) at a Central European mountain site during an episode of dust transport from the Sahara are presented. Ice nuclei were sampled by electrostatic precipitation on silicon wafers and were analyzed in an isothermal static vapor diffusion chamber. The transport of mineral dust is simulated by the Eulerian regional dust model DREAM. Ice nuclei and mineral dust are significantly correlated, in particular IN number concentration and aerosol surface area. The ice nucleating characteristics of the aerosol as analyzed with respect to temperature and supersaturation are similar during the dust episode than during the course of the year. This suggests that dust may be a main constituent of ice nucleating aerosols in Central Europe
Differential binding patterns of anti-sulfatide antibodies to glial membranes
Sulfatide is a major glycosphingolipid in myelin and a target for autoantibodies in autoimmune neuropathies. However neuropathy disease models have not been widely established, in part because currently available monoclonal antibodies to sulfatide may not represent the diversity of anti-sulfatide antibody binding patterns found in neuropathy patients. We sought to address this issue by generating and characterising a panel of new anti-sulfatide monoclonal antibodies. These antibodies have sulfatide reactivity distinct from existing antibodies in assays and in binding to peripheral nerve tissues and can be used to provide insights into the pathophysiological roles of anti-sulfatide antibodies in demyelinating neuropathies
Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada
Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given
Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. validation using [14C]2-deoxyglucose autoradiography
Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T2* MRI (T2* OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T2* signal change during OC. [14C]2-deoxyglucose (2-DG) autoradiography was combined with T2* OC to determine metabolic status of T2*-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147±32 minutes after stroke, T2* signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T2*-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T2* signal increase of 9.22%±3.9% (mean±s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T2* signal change was negligible in ischemic core, 3.2%±0.78% in contralateral regions, and 1.41%±0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue follow
- …
