11,725 research outputs found

    Asymptotics of the solutions of the stochastic lattice wave equation

    Full text link
    We consider the long time limit theorems for the solutions of a discrete wave equation with a weak stochastic forcing. The multiplicative noise conserves the energy and the momentum. We obtain a time-inhomogeneous Ornstein-Uhlenbeck equation for the limit wave function that holds both for square integrable and statistically homogeneous initial data. The limit is understood in the point-wise sense in the former case, and in the weak sense in the latter. On the other hand, the weak limit for square integrable initial data is deterministic

    Understanding the Transition between High School and College Mathematics and Science

    Get PDF
    Mathematics and science education is gaining increasing recognition as key for the well-being of individuals and society. Accordingly, the transition from high school to college is particularly important to ensure that students are prepared for college mathematics and science. The goal of this study was to understand how high school mathematics and science course-taking related to performance in college. Specifically, the study employed a nonparametric regression method to examine the relationship between high school mathematics and science courses, and academic performance in college mathematics and science courses. The results provide some evidence pertaining to the positive benefits from high school course-taking. Namely, students who completed high school trigonometry and lab-based chemistry tended to earn higher grades in college algebra and general chemistry, respectively. However, there was also evidence that high school coursework in biology and physics did not improve course performance in general biology and college physics beyond standardized test scores. Interestingly, students who completed high school calculus earned better grades in general biology. The implications of the findings are discussed for high school curriculum and alignment in standards between high schools and colleges

    Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension

    Get PDF
    We consider the long time, large scale behavior of the Wigner transform W_\eps(t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile, Bernardin, and Olla to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile, Olla, and Spohn. In the present paper we prove that in the unpinned case there exists γ0>0\gamma_0>0 such that for any γ(0,γ0]\gamma\in(0,\gamma_0] the weak limit of W_\eps(t/\eps^{3/2\gamma},x/\eps^{\gamma},k), as \eps\ll1, satisfies a one dimensional fractional heat equation tW(t,x)=c^(x2)3/4W(t,x)\partial_t W(t,x)=-\hat c(-\partial_x^2)^{3/4}W(t,x) with c^>0\hat c>0. In the pinned case an analogous result can be claimed for W_\eps(t/\eps^{2\gamma},x/\eps^{\gamma},k) but the limit satisfies then the usual heat equation

    Thermal conductivity in harmonic lattices with random collisions

    Get PDF
    We review recent rigorous mathematical results about the macroscopic behaviour of harmonic chains with the dynamics perturbed by a random exchange of velocities between nearest neighbor particles. The random exchange models the effects of nonlinearities of anharmonic chains and the resulting dynamics have similar macroscopic behaviour. In particular there is a superdiffusion of energy for unpinned acoustic chains. The corresponding evolution of the temperature profile is governed by a fractional heat equation. In non-acoustic chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.
    corecore