135 research outputs found

    Integration of copy number and transcriptomics provides risk stratification in prostate cancer : a discovery and validation cohort study

    Get PDF
    Study data are deposited in NCBI GEO (unique identifier number GSE70770).Background : Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods : In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone. Findings : We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer ( MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p = 0.0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation : For the first time in prostate cancer this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to the generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts.Peer reviewe

    Dual production of polyhydroxyalkanoates and antibacterial/antiviral gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs) have been explored for their use in medicine. Here, we report a sustainable, and cost-effective method to produce AuNPs using a bacterial strain such as Pseudomonas mendocina CH50 which is also known to be a polyhydroxyalkanoate (PHA) producer. A cell-free bacterial supernatant, which is typically discarded after PHA extraction, was used to produce spherical AuNPs of 3.5 ± 1.5 nm in size as determined by Transmission Electron Microscopy (TEM) analysis. The AuNPs/PHA composite coating demonstrated antibacterial activity against Staphylococcus aureus 6538P, and antiviral activity, with a 75% reduction in viral infectivity against SARS-CoV-2 pseudotype virus

    Antimicrobial Materials with Lime Oil and a Poly (3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses

    Get PDF
    A medium chain-length polyhydroxyalkanoate (PHA) was produced by Pseudomonas mendocina CH50 using a cheap carbon substrate, sugarcane molasses. A PHA yield of 14.2% dry cell weight was achieved. Chemical analysis confirmed that the polymer produced was a medium chain-length PHA, a copolymer of 3-hydroxyoctanoate and 3-hydroxydecanoate, P(3HO-co-3HD). Lime oil, an essential oil with known antimicrobial activity, was used as an additive to P(3HO-co-3HD) to confer antibacterial properties to this biodegradable polymer. The incorporation of lime oil induced a slight decrease in crystallinity of P(3HO-co-3HD) films. The antibacterial properties of lime oil were investigated using ISO 20776 against Staphylococcus aureus 6538P and Escherichia coli 8739, showing a higher activity against the Gram-positive bacteria. The higher activity of the oil against S. aureus 6538P defined the higher efficiency of loaded polymer films against this strain. The effect of storage on the antimicrobial properties of the loaded films was investigated. After one-year storage, the content of lime oil in the films decreased, causing a reduction of the antimicrobial activity of the materials produced. However, the films still possessed antibacterial activity against S. aureus 6538P

    Green composites of poly(3-hydroxybutyrate) containing graphene nanoplatelets with desirable electrical conductivity and oxygen barrier properties

    Get PDF
    Poly(3-hydroxybutyrate), a green polymer originating from prokaryotic microbes, has been used to prepare composites with graphene nanoplatelets (GnP) at different concentrations. The films were fabricated by drop-casting and were hot-pressed at a temperature lower than their melting point to provide the molecular chains enough energy to reorientate while avoiding melting and degradation. It was found that hot-pressing increases crystallinity and improves mechanical properties. The Young’s modulus increased from 1.2 to 1.6 GPa for the poly(3-hydroxybutyrate) (P(3HB)) films and from 0.5 to 2.2 GPa for the 15 wt % P(3HB)/GnP composites. Electrical resistivity decreases enormously with GnP concentration and hot-pressing, reaching 6 Ω sq–1 for the hot-pressed 30 wt % P(3HB)/GnP composite. Finally, the hot-pressed P(3HB) samples exhibit remarkable oxygen barrier properties, with oxygen permeability reaching 2800 mL μm m–2 day–1, which becomes 895 mL μm m–2 day–1 when 15% GnP is added to the biopolymer matrix, one of the lowest values known for biopolymers and biocomposites. We propose that these biocomposites are used for elastic packaging and electronics

    Antimicrobial materials with lime oil and a poly(3-hydroxyalkanoate) produced via valorisation of sugar cane molasses

    Get PDF
    A medium chain-length polyhydroxyalkanoate (PHA) was produced by Pseudomonas mendocina CH50 using a cheap carbon substrate, sugarcane molasses. A PHA yield of 14.2% dry cell weight was achieved. Chemical analysis confirmed that the polymer produced was a medium chain-length PHA, a copolymer of 3-hydroxyoctanoate and 3-hydroxydecanoate, P(3HO-co-3HD). Lime oil, an essential oil with known antimicrobial activity, was used as an additive to P(3HO-co-3HD) to confer antibacterial properties to this biodegradable polymer. The incorporation of lime oil induced a slight decrease in crystallinity of P(3HO-co-3HD) films. The antibacterial properties of lime oil were investigated using ISO 20776 against Staphylococcus aureus 6538P and Escherichia coli 8739, showing a higher activity against the Gram-positive bacteria. The higher activity of the oil against S. aureus 6538P defined the higher efficiency of loaded polymer films against this strain. The effect of storage on the antimicrobial properties of the loaded films was investigated. After one-year storage, the content of lime oil in the films decreased, causing a reduction of the antimicrobial activity of the materials produced. However, the films still possessed antibacterial activity against S. aureus 6538P

    Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections

    Get PDF
    Chronic wound infections represent a significant burden to healthcare providers globally. Often, chronic wound healing is impeded by the presence of infection within the wound or wound bed. This can result in an increased healing time, healthcare cost and poor patient outcomes. Thus, there is a need for dressings that help the wound heal, in combination with early detection of wound infections to support prompt treatment. In this study, we demonstrate a novel, biocompatible wound dressing material, based on Polyhydroxyalkanoates, doped with graphene platelets, which can be used as an electrochemical sensing substrate for the detection of a common wound pathogen, Pseudomonas aeruginosa. Through the detection of the redox active secondary metabolite, pyocyanin, we demonstrate that a dressing can be produced that will detect the presence of pyocyanin across clinically relevant concentrations. Furthermore, we show that this sensor can be used to identify the presence of pyocyanin in a culture of P. aeruginosa. Overall, the sensor substrate presented in this paper represents the first step toward a new dressing with the capacity to promote wound healing, detect the presence of infection and release antimicrobial drugs, on demand, to optimized healing

    Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration

    Get PDF
    Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria

    Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application

    Get PDF
    Polyhydroxyalkanoates (PHAs) are a family of bio-based polyesters that have found different biomedical applications. Chitin and lignin, byproducts of fishery and plant biomass, show antimicrobial and anti-inflammatory activity on the nanoscale. Due to their polarities, chitin nanofibril (CN) and nanolignin (NL) can be assembled into micro-complexes, which can be loaded with bioactive factors, such as the glycyrrhetinic acid (GA) and CN-NL/GA (CLA) complexes, and can be used to decorate polymer surfaces. This study aims to develop completely bio-based and bioactive meshes intended for wound healing. Poly(3-hydroxybutyrate)/Poly(3-hydroxyoctanoate-co-3-hydroxydecanoate), P(3HB)/P(3HO-co-3HD) was used to produce films and fiber meshes, to be surface-modified via electrospraying of CN or CLA to reach a uniform distribution. P(3HB)/P(3HO-co-3HD) fibers with desirable size and morphology were successfully prepared and functionalized with CN and CLA using electrospinning and tested in vitro with human keratinocytes. The presence of CN and CLA improved the indirect antimicrobial and anti-inflammatory activity of the electrospun fiber meshes by downregulating the expression of the most important pro-inflammatory cytokines and upregulating human defensin 2 expression. This natural and eco-sustainable mesh is promising in wound healing applications

    Silver nanoparticle-coated polyhydroxyalkanoate based electrospun fibers for wound dressing applications

    Get PDF
    Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good han-dling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications
    corecore