1,852 research outputs found
Interplane charge dynamics in a valence-bond dynamical mean-field theory of cuprate superconductors
We present calculations of the interplane charge dynamics in the normal state
of cuprate superconductors within the valence-bond dynamical mean-field theory.
We show that by varying the hole doping, the c-axis optical conductivity and
resistivity dramatically change character, going from metallic-like at large
doping to insulating-like at low-doping. We establish a clear connection
between the behavior of the c-axis optical and transport properties and the
destruction of coherent quasiparticles as the pseudogap opens in the antinodal
region of the Brillouin zone at low doping. We show that our results are in
good agreement with spectroscopic and optical experiments.Comment: 5 pages, 3 figure
Charge dynamics in the half-metallic ferromagnet CrO\u3csub\u3e2\u3c/sub\u3e
Infrared spectroscopy is used to investigate the electronic structure and charge carrier relaxation in crystalline films of CrO2 which is the simplest of all half-metallic ferromagnets. Chromium dioxide is a bad metal at room temperature but it has a remarkably low residual resistivity (\u3c5 \u3eμΩ cm) despite the small spectral weight associated with free carrier absorption. The infrared measurements show that low residual resistivity is due to the collapse of the scattering rate at ω\u3c2000 \u3ecm-1. The blocking of the relaxation channels at low v and T can be attributed to the unique electronic structure of a half-metallic ferromagnet. In contrast to other ferromagnetic oxides, the intraband spectral weight is constant below the Curie temperature
Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites
We report a study of magnetic dynamics in multiferroic hexagonal manganite
HoMnO3 by far-infrared spectroscopy. Low-temperature magnetic excitation
spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within
the crystal-field split J=8 manifold and of the triangular antiferromagnetic
resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho
ion ground state. The magnetic-field splitting of the Mn antiferromagnetic
resonance allows us to measure the magnetic exchange coupling between the
rare-earth and Mn ions.Comment: accepted for publication in Physical Review Letter
Colloquium: Graphene spectroscopy
Spectroscopic studies of electronic phenomena in graphene are reviewed. A
variety of methods and techniques are surveyed, from quasiparticle
spectroscopies (tunneling, photoemission) to methods probing density and
current response (infrared optics, Raman) to scanning probe nanoscopy and
ultrafast pump-probe experiments. Vast complimentary information derived from
these investigations is shown to highlight unusual properties of Dirac
quasiparticles and many-body interaction effects in the physics of graphene.Comment: 36 pages, 16 figure
Angle-resolved photoemission spectra in the cuprates from the d-density wave theory
Angle-resolved photoemission spectra present two challenges for the d-density
wave (DDW) theory of the pseudogap state of the cuprates: (1) hole pockets near
are not observed, in apparent contradiction with the assumption
of translational symmetry breaking, and (2) there are no well-defined
quasiparticles at the {\it antinodal} points, in contradiction with the
predictions of mean-field theory of this broken symmetry state. Here, we show
how these puzzles can be resolved.Comment: 4 pages, 3 eps figures, RevTex
- …
