1,756 research outputs found
Deriving AGN properties from radio CP and LP
We report multi-frequency circular polarization measurements for the radio
source 0056-00 taken at the Effelsberg 100-m radiotelescope. The data reduction
is based on a new calibration procedure that allows the contemporary
measurement of the four Stokes parameters with single-dish radiotelescopesComment: 2 pages, Proceeding of "IAU Symposium No.259. Cosmic Magnetic Fields
from planets, to stars and galaxies
What is the Accretion Rate in Sgr A*?
The radio source Sgr A* at the center of our Galaxy is believed to be a 2.6 x
10^6 solar mass black hole which accretes gas from the winds of nearby stars.
We show that limits on the X-ray and infrared emission from the Galactic Center
provide an upper limit of ~ 8 x 10^{-5} solar masses per year on the mass
accretion rate in Sgr A*. The advection-dominated accretion flow (ADAF) model
favors a rate < 10^{-5} solar masses per year. In comparison, the Bondi
accretion rate onto Sgr A*, estimated using the observed spatial distribution
of mass losing stars and assuming non-interacting stellar winds, is ~ 3 x
10^{-5} solar masses per year. There is thus rough agreement between the Bondi,
the ADAF, and the X-ray inferred accretion rates for Sgr A*. We discuss
uncertainties in these estimates, emphasizing the importance of upcoming
observations by the Chandra X-ray observatory (CXO) for tightening the X-ray
derived limits.Comment: to appear in ApJ Letter
Constraining the Accretion Rate Onto Sagittarius A* Using Linear Polarization
Two possible explanations for the low luminosity of the supermassive black
hole at the center of our galaxy are (1) an accretion rate of order the
canonical Bondi value (roughly 10^{-5} solar masses per year), but a very low
radiative efficiency for the accreting gas or (2) an accretion rate much less
than the Bondi rate. Both models can explain the broad-band spectrum of the
Galactic Center. We show that they can be distinguished using the linear
polarization of synchrotron radiation. Accretion at the Bondi rate predicts no
linear polarization at any frequency due to Faraday depolarization. Low
accretion rate models, on the other hand, have much lower gas densities and
magnetic field strengths close to the black hole; polarization may therefore be
observable at high frequencies. If confirmed, a recent detection of linear
polarization from Sgr A above 150 GHz argues for an accretion rate of order
10^{-8} solar masses per year, much less than the Bondi rate. This test can be
applied to other low-luminosity galactic nuclei.Comment: final version accepted by ApJ; references added, somewhat shortene
Estimativa de parâmetros de crescimento, produção e dinâmica de um fragmento de Floresta com Araucária usando dados de parcelas permanentes.
Editores técnicos: Marcílio José Thomazini, Elenice Fritzsons, Patrícia Raquel Silva, Guilherme Schnell e Schuhli, Denise Jeton Cardoso, Luziane Franciscon. EVINCI. Resumos
Geotecnologias como apoio à remedição de parcelas permanentes em Floresta Ombrófila Mista.
Resumo
Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows
We investigate the effect of a hybrid electron population, consisting of both
thermal and non-thermal particles, on the synchrotron spectrum, image size, and
image shape of a hot accretion flow onto a supermassive black hole. We find two
universal features in the emitted synchrotron spectrum: (i) a prominent
shoulder at low (< 10^11 Hz) frequencies that is weakly dependent on the shape
of the electron energy distribution, and (ii) an extended tail of emission at
high (> 10^13 Hz) frequencies whose spectral slope depends on the slope of the
power-law energy distribution of the electrons. In the low-frequency shoulder,
the luminosity can be up to two orders of magnitude greater than with a purely
thermal plasma even if only a small fraction (< 1%) of the steady-state
electron energy is in the non-thermal electrons. We apply the hybrid model to
the Galactic center source, Sgr A*. The observed radio and IR spectra imply
that at most 1% of the steady-state electron energy is present in a power-law
tail in this source. This corresponds to no more than 10% of the electron
energy injected into the non-thermal electrons and hence 90% into the thermal
electrons. We show that such a hybrid distribution can be sustained in the flow
because thermalization via Coulomb collisions and synchrotron self-absorption
are both inefficient. The presence of non-thermal electrons enlarges the size
of the radio image at low frequencies and alters the frequency dependence of
the brightness temperature. A purely thermal electron distributions produces a
sharp-edged image while a hybrid distribution causes strong limb brightening.
These effects can be seen up to frequencies ~10^11 Hz and are accessible to
radio interferometers.Comment: 33 pages with figures, to appear in the Astrophysical Journa
Sgr A* Polarization: No ADAF, Low Accretion Rate, and Non-Thermal Synchrotron Emission
The recent detection of polarized radiation from Sgr A* requires a
non-thermal electron distribution for the emitting plasma. The Faraday rotation
measure must be small, placing strong limits on the density and magnetic field
strength. We show that these constraints rule out advection-dominated accretion
flow models. We construct a simple two-component model which can reproduce both
the radio to mm spectrum and the polarization. This model predicts that the
polarization should rise to nearly 100% at shorter wavelengths. The first
component, possibly a black-hole powered jet, is compact, low density, and
self-absorbed near 1 mm with ordered magnetic field, relativistic Alfven speed,
and a non-thermal electron distribution. The second component is poorly
constrained, but may be a convection-dominated accretion flow with dM/dt~10^-9
M_Sun/yr, in which feedback from accretion onto the black hole suppresses the
accretion rate at large radii. The black hole shadow should be detectable with
sub-mm VLBI.Comment: 4 pages, 1 figure, accepted by ApJL, several changes from submitted
versio
High Proper Motion Stars in the Vicinity of Sgr A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy
Over a two year period (1995-1997), we have conducted a diffraction-limited
imaging study at 2.2 microns of the inner 6"x6" of the Galaxy's central stellar
cluster using the Keck 10-m telescope. The K band images obtained reveal a
large population of faint stars. We use an unbiased approach for identifying
and selecting stars to be included in this proper motion study, which results
in a sample of 90 stars with brightness ranging from K=9-17 and velocities as
large as 1,400+-100 km/sec. Compared to earlier work (Eckart et al. 1997;
Genzel et al. 1997), the source confusion is reduced by a factor of 9, the
number of stars with proper motion measurement in the central 25 arcsec^2 of
our galaxy is doubled, and the accuracy of the velocity measurements in the
central 1 arcsec^2 is improved by a factor of 4. The peaks of both the stellar
surface density and the velocity dispersion are consistent with the position of
the unusual radio source and blackhole candidate, Sgr A*, suggesting that Sgr
A* is coincident (+-0."1) with the dynamical center of the Galaxy. As a
function of distance from Sgr A*, the velocity dispersion displays a falloff
well fit by Keplerian motion about a central dark mass of 2.6(+-0.2)x10^6 Mo
confined to a volume of at most 10^-6 pc^3, consistent with earlier results.
Although uncertainties in the measurements mathematically allow for the matter
to be distributed over this volume as a cluster, no realistic cluster is
physically tenable. Thus, independent of the presence of Sgr A*, the large
inferred central density of at least 10^12 Mo/pc^3, which exceeds the
volume-averaged mass densities found at the center of any other galaxy, leads
us to the conclusion that our Galaxy harbors a massive central black hole.Comment: 19 pages, 8 figures, accepted for publications in the Astrophysical
Journa
- …
