2,404 research outputs found
On the cohomology of stable map spaces
We describe an approach to calculating the cohomology rings of stable map
spaces. The method we use is due to Akildiz-Carrell and employs a C^*-action
and a vector field which is equivariant with respect to this C^*-action. We
give an explicit description of the big Bialynicky-Birula cell of the
C^*-action on Mbar_00(P^n,d) as a vector bundle on Mbar_0d. This is used to
calculate explicitly the cohomology ring of Mbar_00(P^n,d) in the cases d=2 and
d=3. Of particular interest is the case as n approaches infinity.Comment: 63 page
Solutions of the boundary Yang-Baxter equation for ADE models
We present the general diagonal and, in some cases, non-diagonal solutions of
the boundary Yang-Baxter equation for a number of related
interaction-round-a-face models, including the standard and dilute A_L, D_L and
E_{6,7,8} models.Comment: 32 pages. Sections 7.2 and 9.2 revise
Higher Spin Alternating Sign Matrices
We define a higher spin alternating sign matrix to be an integer-entry square
matrix in which, for a nonnegative integer r, all complete row and column sums
are r, and all partial row and column sums extending from each end of the row
or column are nonnegative. Such matrices correspond to configurations of spin
r/2 statistical mechanical vertex models with domain-wall boundary conditions.
The case r=1 gives standard alternating sign matrices, while the case in which
all matrix entries are nonnegative gives semimagic squares. We show that the
higher spin alternating sign matrices of size n are the integer points of the
r-th dilate of an integral convex polytope of dimension (n-1)^2 whose vertices
are the standard alternating sign matrices of size n. It then follows that, for
fixed n, these matrices are enumerated by an Ehrhart polynomial in r.Comment: 41 pages; v2: minor change
Integrable Boundaries, Conformal Boundary Conditions and A-D-E Fusion Rules
The minimal theories are labelled by a Lie algebra pair where
is of -- type. For these theories on a cylinder we conjecture a
complete set of conformal boundary conditions labelled by the nodes of the
tensor product graph . The cylinder partition functions are given
by fusion rules arising from the graph fusion algebra of . We
further conjecture that, for each conformal boundary condition, an integrable
boundary condition exists as a solution of the boundary Yang-Baxter equation
for the associated lattice model. The theory is illustrated using the
or 3-state Potts model.Comment: 4 pages, REVTe
Exceptional boundary states at c=1
We consider the CFT of a free boson compactified on a circle, such that the
compactification radius is an irrational multiple of . Apart
from the standard Dirichlet and Neumann boundary states, Friedan suggested [1]
that an additional 1-parameter family of boundary states exists. These states
break U(1) symmetry of the theory, but still preserve conformal invariance. In
this paper we give an explicit construction of these states, show that they are
uniquely determined by the Cardy-Lewellen sewing constraints, and we study the
spectrum in the `open string channel', which is given here by a continous
integral with a nonnegative measure on the space of conformal weights.Comment: 18 pages; v2 corrected assumptions (now weaker), results unchange
Interaction-Round-a-Face Models with Fixed Boundary Conditions: The ABF Fusion Hierarchy
We use boundary weights and reflection equations to obtain families of
commuting double-row transfer matrices for interaction-round-a-face models with
fixed boundary conditions. In particular, we consider the fusion hierarchy of
the Andrews-Baxter-Forrester models, for which we find that the double-row
transfer matrices satisfy functional equations with an su(2) structure.Comment: 48 pages, LaTeX, requires about 79000 words of TeX memory. Submitted
to J. Stat. Phy
Pion transition form factor at the two-loop level vis-\`a-vis experimental data
We use light-cone QCD sum rules to calculate the pion-photon transition form
factor, taking into account radiative corrections up to the
next-to-next-to-leading order of perturbation theory. We compare the obtained
predictions with all available experimental data from the CELLO, CLEO, and the
BaBar Collaborations. We point out that the BaBar data are incompatible with
the convolution scheme of QCD, on which our predictions are based, and can
possibly be explained only with a violation of the factorization theorem. We
pull together recent theoretical results and comment on their significance.Comment: 10 pages, 4 figures, 3 tables. Presented by the first author at
Workshop "Recent Advances in Perturbative QCD and Hadronic Physics", 20--25
July 2009, ECT*, Trento (Italy), in Honor of Prof. Anatoly Efremov's 75th
Birthday. v2 wrong reference tag removed. v3 Fig. 4 and Ref. [27] correcte
Integrable and Conformal Boundary Conditions for sl(2) A-D-E Lattice Models and Unitary Minimal Conformal Field Theories
Integrable boundary conditions are constructed for the critical A-D-E lattice models of statistical mechanics. In particular, using techniques associated with the Temperley-Lieb algebra and fusion, a set of explicit boundary Boltzmann weights which satisfies the boundary Yang-Baxter equation is obtained for each boundary condition. When appropriately specialised, these boundary weights, each of which depends on three spins, decompose into more natural two-spin edge weights. The specialised boundary conditions are also naturally in one-to-one correspondence with the conformal boundary conditions of sl(2) unitary minimal conformal field theories. Supported by this and further evidence, we conclude that, in the continuum scaling limit, the integrable boundary conditions provide realisations of the complete set of conformal boundary conditions in the corresponding field theories
Extended modular operad
This paper is a sequel to [LoMa] where moduli spaces of painted stable curves
were introduced and studied. We define the extended modular operad of genus
zero, algebras over this operad, and study the formal differential geometric
structures related to these algebras: pencils of flat connections and Frobenius
manifolds without metric. We focus here on the combinatorial aspects of the
picture. Algebraic geometric aspects are treated in [Ma2].Comment: 38 pp., amstex file, no figures. This version contains additional
references and minor change
- …
