16 research outputs found
High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis
A long-standing question in retrovirus biology is how RNA genomes are distributed among virions. In the studies presented in this report, we addressed this issue by directly examining HIV-1 RNAs in virions using a modified HIV-1 genome that contained recognition sites for BglG, an antitermination protein in the Escherichia coli bgl operon, which was coexpressed with a fragment of BglG RNA binding protein fused to a fluorescent protein. Our results demonstrate that the majority of virions (>90%) contain viral RNAs. We also coexpressed HIV-1 genomes containing binding sites for BglG or the bacteriophage MS2 coat protein along with 2 fluorescent protein-tagged RNA binding proteins. This method allows simultaneously labeling and discrimination of 2 different RNAs at single-RNA-detection sensitivity. Using this strategy, we obtained physical evidence that virions contain RNAs derived from different parental viruses (heterozygous virion) at ratios expected from a random distribution, and we found that this ratio can be altered by changing the dimerization sequences. Our studies of heterozygous virions also support a generally accepted but unproven assumption that most particles contain 1 dimer. This study provides answers to long-standing questions in HIV-1 biology and illustrates the power and sensitivity of the 2-RNA labeling method, which can also be adapted to analyze various issues of RNA biogenesis including the detection of different RNAs in live cell imaging
Long-term therapeutic effects on parkinsonian rats of intrastriatal co-grafts with genetically engineered fibroblasts expressing tyrosine hydroxylase and glial cell line-derived neurotrophic factor
Ectopic expression of tyrosine hydroxylase in the pigmented epithelium rescues the retinal abnormalities and visual function common in albinos in the absence of melanin
Functional Interactions Between GTP Cyclohydrolase I and Tyrosine Hydroxylase in Drosophila
Interleukin-1 Receptor Activation by Systemic Lipopolysaccharide Induces Behavioral Despair Linked to MAPK Regulation of CNS Serotonin Transporters
Serotonin (5-hydroxytryptamine, 5-HT) has long been implicated in regulation of mood. Medications that block the neuronal 5-HT transporter (SERT) are used as major pharmacological treatment for mood disorders. Conversely, stimuli that enhance SERT activity might be predicted to diminish synaptic 5-HT availability and increase the risk for 5-HT-related CNS disorders. We have shown that the inflammatory cytokines enhance brain SERT activity in cultured serotonergic cells and nerve terminal preparations in vitro. In this study, we establish that intraperitoneal injection of the cytokine-inducer lipopolysaccharide (LPS) stimulates brain SERT activity, acting at doses below those required to induce overt motor suppression. SERT stimulation by LPS is paralleled by increased immobility in both the tail suspension test (TST) and the forced swim test (FST); antidepressant-sensitive alterations are thought to model aspects of behavioral despair. Both the stimulation of SERT activity and induced immobility are absent when LPS is administered to interleukin-1 receptor (IL-1R)-deficient mice and in the presence of SB203580, an inhibitor of IL-1R-stimulated p38 MAPK. Moreover, the ability of LPS to enhance immobility in TST is lost in SERT knockout mice. These findings reveal an ability of peripheral inflammatory stimuli to enhance brain SERT activity through IL-1R and p38 MAPK pathways in vivo and identify a requirement for SERT expression in immune-system-modulated despair behaviors. Our studies identify IL-1R- and p38 MAPK-dependent regulation of SERT as one of the mechanisms by which environmentally driven immune system activation can trigger despair-like behavior in an animal model, encouraging future analysis of the pathway for risk factors in neuropsychiatric disorders
Nonsynaptic noradrenaline release in neuro-immune responses
Evidence has recently been obtained that the branches of the autonomic nervous system, mainly, the sympathetic [25], regulate cytokine production. Not only the primary (thymus, bone marrow) and secondary (spleen, tonsils, and lymph nodes) lymphoid organs, but also many other tissues are involved in immune responses and are heavily influenced by noradrenaline (NA) derived from varicose axon terminals of the sympathetic nervous system [25, 100]. Besides NA released from nonsynaptic varicosities of noradrenergic terminals [92], circulating catecholamines (adrenaline, dopamine, NA) are also able to influence immune responses, the production of pro- and anti-inflammatory cytokines by different immune cells. The sympathetic nervous system (catecholamines) and the hypothalamic-pituitary-adrenal (HPA) axis (cortisol) are the major integrative and regulatory components of different immune responses. In our laboratory convincing evidence has been obtained that NA released non-synaptically [90, 92] from sympathetic axon terminals and enhanced in concentration in the close proximity of immune cells is able to inhibit production of proinflammatory (TNF-a, IFN-g, IL-12, IL-1) and increase antiinflammatory cytokines (IL-10) in response to LPS [25, 91], indicating a fine-tuning control of the production of TNF-a and other cytokines by sympathetic innervation under stressful conditions. This effects are mediated via b2-adrenoceptors expressed on immune cells and coupled to cAMP levels
Dopaminergic Regulation of Innate Immunity: a Review
Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson\ue2\u80\u99s disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson\ue2\u80\u99s disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems
