1,110 research outputs found
Thermodynamics of itinerant metamagnetic transitions
Theoretical studies of the metamagnetism and anomalous phase of Sr3Ru2O7 have
focused on the role of van Hove singularities, although much experimental
evidence points towards quantum criticality having a large effect. We
investigate the magnetic and thermodynamic properties of systems where magnetic
field tunes through such a peak in the electronic density of states. We study
the generic case of a van Hove singularity in 2D. We see that in combination
with the requirement of number conservation and interaction effects the peak in
the density of states produces several interesting phenomena including raising
the critical field of the transition above naive estimates, altering the
relationship between temperature and field scales and creating a distinctive
double-peak structure in the electronic specific heat. We show that this
apparent non-Fermi liquid behaviour can be caused at mean-field level by a peak
in the density of states.Comment: 6 pages, 4 figure
Chirality induced anomalous-Hall effect in helical spin crystals
Under pressure, the itinerant helimagnet MnSi displays unusual magnetic
properties. We have previously discussed a BCC helical spin crystal as a
promising starting point for describing the high pressure phenomenology. This
state has topologically nontrivial configurations of the magnetization field.
Here we note the consequences for magneto-transport that arise generally from
such spin textures. In particular a skyrmion density induced `topological' Hall
effect, with unusual field dependence, is described.Comment: 4 pages, 3 figures, to appear in the proceedings of SCES 07 (the
international conference on strongly correlated electron systems 2007 in
Houston, USA
Skyrmion Lattice in a Chiral Magnet
Skyrmions represent topologically stable field configurations with
particle-like properties. We used neutron scattering to observe the spontaneous
formation of a two-dimensional lattice of skyrmion lines, a type of magnetic
vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice
stabilizes at the border between paramagnetism and long-range helimagnetic
order perpendicular to a small applied magnetic field regardless of the
direction of the magnetic field relative to the atomic lattice. Our study
experimentally establishes magnetic materials lacking inversion symmetry as an
arena for new forms of crystalline order composed of topologically stable spin
states
Phonon-mediated tuning of instabilities in the Hubbard model at half-filling
We obtain the phase diagram of the half-filled two-dimensional Hubbard model
on a square lattice in the presence of Einstein phonons. We find that the
interplay between the instantaneous electron-electron repulsion and
electron-phonon interaction leads to new phases. In particular, a
d-wave superconducting phase emerges when both anisotropic phonons
and repulsive Hubbard interaction are present. For large electron-phonon
couplings, charge-density-wave and s-wave superconducting regions also appear
in the phase diagram, and the widths of these regions are strongly dependent on
the phonon frequency, indicating that retardation effects play an important
role. Since at half-filling the Fermi surface is nested, spin-density-wave is
recovered when the repulsive interaction dominates. We employ a functional
multiscale renormalization-group method that includes both electron-electron
and electron-phonon interactions, and take retardation effects fully into
account.Comment: 8 pages, 5 figure
Solution of the infinite range t-J model
The t-J model with constant t and J between any pair of sites is studied by
exploiting the symmetry of the Hamiltonian with respect to site permutations.
For a given number of electrons and a given total spin the exchange term simply
yields an additive constant. Therefore the real problem is to diagonalize the
"t- model", or equivalently the infinite U Hubbard Hamiltonian. Using
extensively the properties of the permutation group, we are able to find
explicitly both the energy eigenvalues and eigenstates, labeled according to
spin quantum numbers and Young diagrams. As a corollary we also obtain the
degenerate ground states of the finite Hubbard model with infinite range
hopping -t>0.Comment: 15 pages, 2 figure
The Most Severe Test for Hydrophobicity Scales: Two Proteins with 88% Sequence Identity but Different Structure and Function
Protein-protein interactions (protein functionalities) are mediated by water,
which compacts individual proteins and promotes close and temporarily stable
large-area protein-protein interfaces. In their classic paper Kyte and
Doolittle (KD) concluded that the "simplicity and graphic nature of
hydrophobicity scales make them very useful tools for the evaluation of protein
structures". In practice, however, attempts to develop hydrophobicity scales
(for example, compatible with classical force fields (CFF) in calculating the
energetics of protein folding) have encountered many difficulties. Here we
suggest an entirely different approach, based on the idea that proteins are
self-organized networks, subject to finite-scale criticality (like some network
glasses). We test this proposal against two small proteins that are delicately
balanced between alpha and alpha/beta structures, with different functions
encoded with only 12% of their amino acids. This example explains why protein
structure prediction is so challenging, and it provides a severe test for the
accuracy and content of hydrophobicity scales. The new method confirms KD's
evaluation, and at the same time suggests that protein structure, dynamics and
function can be best discussed without using CFF
Magnetic domain formation in itinerant metamagnets
We examine the effects of long-range dipolar forces on metamagnetic
transitions and generalize the theory of Condon domains to the case of an
itinerant electron system undergoing a first-order metamagnetic transition. We
demonstrate that within a finite range of the applied field, dipolar
interactions induce a spatial modulation of the magnetization in the form of
stripes or bubbles. Our findings are consistent with recent observations in the
bilayer ruthenate SrRuO.Comment: 4 pages, 3 figures, minor changes, references adde
Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells
Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells
Van Hove singularity and spontaneous Fermi surface symmetry breaking in Sr3Ru2O7
The most salient features observed around a metamagnetic transition in
Sr3Ru2O7 are well captured in a simple model for spontaneous Fermi surface
symmetry breaking under a magnetic field, without invoking a putative quantum
critical point. The Fermi surface symmetry breaking happens in both a majority
and a minority spin band but with a different magnitude of the order parameter,
when either band is tuned close to van Hove filling by the magnetic field. The
transition is second order for high temperature T and changes into first order
for low T. The first order transition is accompanied by a metamagnetic
transition. The uniform magnetic susceptibility and the specific heat
coefficient show strong T dependence, especially a log T divergence at van Hove
filling. The Fermi surface instability then cuts off such non-Fermi liquid
behavior and gives rise to a cusp in the susceptibility and a specific heat
jump at the transition temperature.Comment: 11 pages, 4 figure
- …
