2,530 research outputs found
Industrial application experiment series
Two procurements within the Industrial Application Experiment Series of the Thermal Power Systems Project are discussed. The first procurement, initiated in April 1980, resulted in an award to the Applied Concepts Corporation for the Capital Concrete Experiment: two Fresnel concentrating collectors will be evaluated in single-unit installations at the Jet Propulsion Laboratory Parabolic Dish Test Site and at Capitol Concrete Products, Topeka, Kansas. The second procurement, initiated in March 1981, is titled, "Thermal System Engineering Experiment B." The objective of the procurement is the rapid deployment of developed parabolic dish collectors
Keplerian Squeezed States and Rydberg Wave Packets
We construct minimum-uncertainty solutions of the three-dimensional
Schr\"odinger equation with a Coulomb potential. These wave packets are
localized in radial and angular coordinates and are squeezed states in three
dimensions. They move on elliptical keplerian trajectories and are appropriate
for the description of the corresponding Rydberg wave packets, the production
of which is the focus of current experimental effort. We extend our analysis to
incorporate the effects of quantum defects in alkali-metal atoms, which are
used in experiments.Comment: accepted for publication in Physical Review
Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect
The quantum Hall effect is necessarily accompanied by low-energy excitations
localized at the edge of a two-dimensional electron system. For the case of
electrons interacting via the long-range Coulomb interaction, these excitations
are edge magnetoplasmons. We address the time evolution of localized
edge-magnetoplasmon wave packets. On short times the wave packets move along
the edge with classical E cross B drift. We show that on longer times the wave
packets can have properties similar to those of the Rydberg wave packets that
are produced in atoms using short-pulsed lasers. In particular, we show that
edge-magnetoplasmon wave packets can exhibit periodic revivals in which a
dispersed wave packet reassembles into a localized one. We propose the study of
edge-magnetoplasmon wave packets as a tool to investigate dynamical properties
of integer and fractional quantum-Hall edges. Various scenarios are discussed
for preparing the initial wave packet and for detecting it at a later time. We
comment on the importance of magnetoplasmon-phonon coupling and on quantum and
thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was
originally 3Mbyte and had to be bitmapped for submission to archive; in the
process it acquired distracting artifacts, to upload the better version, see
http://physics.indiana.edu/~uli/publ/projects.htm
Elliptical Squeezed States and Rydberg Wave Packets
We present a theoretical construction for closest-to-classical wave packets
localized in both angular and radial coordinates and moving on a keplerian
orbit. The method produces a family of elliptical squeezed states for the
planar Coulomb problem that minimize appropriate uncertainty relations in
radial and angular coordinates. The time evolution of these states is studied
for orbits with different semimajor axes and eccentricities. The elliptical
squeezed states may be useful for a description of the motion of Rydberg wave
packets excited by short-pulsed lasers in the presence of external fields,
which experiments are attempting to produce. We outline an extension of the
method to include certain effects of quantum defects appearing in the
alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199
Fluctuation Superconductivity in Mesoscopic Aluminum Rings
Fluctuations are important near phase transitions, where they can be
difficult to describe quantitatively. Superconductivity in mesoscopic rings is
particularly intriguing because the critical temperature is an oscillatory
function of magnetic field. There is an exact theory for thermal fluctuations
in one-dimensional superconducting rings, which are therefore expected to be an
excellent model system. We measure the susceptibility of many rings, one ring
at a time, using a scanning SQUID that can isolate magnetic signals from seven
orders of magnitude larger background applied flux. We find that the
fluctuation theory describes the results and that a single parameter
characterizes the ways in which the fluctuations are especially important at
magnetic fields where the critical temperature is suppressed.Comment: Reprinted with permission from AAA
Universal quantum computation with ordered spin-chain networks
It is shown that anisotropic spin chains with gapped bulk excitations and
magnetically ordered ground states offer a promising platform for quantum
computation, which bridges the conventional single-spin-based qubit concept
with recently developed topological Majorana-based proposals. We show how to
realize the single-qubit Hadamard, phase, and pi/8 gates as well as the
two-qubit CNOT gate, which together form a fault-tolerant universal set of
quantum gates. The gates are implemented by judiciously controlling Ising
exchange and magnetic fields along a network of spin chains, with each
individual qubit furnished by a spin-chain segment. A subset of single-qubit
operations is geometric in nature, relying on control of anisotropy of spin
interactions rather than their strength. We contrast topological aspects of the
anisotropic spin-chain networks to those of p-wave superconducting wires
discussed in the literature.Comment: 9 pages, 3 figure
Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms
This paper begins with an examination of the revival structure and long-term
evolution of Rydberg wave packets for hydrogen. We show that after the initial
cycle of collapse and fractional/full revivals, which occurs on the time scale
, a new sequence of revivals begins. We find that the structure of
the new revivals is different from that of the fractional revivals. The new
revivals are characterized by periodicities in the motion of the wave packet
with periods that are fractions of the revival time scale . These
long-term periodicities result in the autocorrelation function at times greater
than having a self-similar resemblance to its structure for times
less than . The new sequence of revivals culminates with the
formation of a single wave packet that more closely resembles the initial wave
packet than does the full revival at time , i.e., a superrevival
forms. Explicit examples of the superrevival structure for both circular and
radial wave packets are given. We then study wave packets in alkali-metal
atoms, which are typically used in experiments. The behavior of these packets
is affected by the presence of quantum defects that modify the hydrogenic
revival time scales and periodicities. Their behavior can be treated
analytically using supersymmetry-based quantum-defect theory. We illustrate our
results for alkali-metal atoms with explicit examples of the revival structure
for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199
Advanced cogeneration research study: Executive summary
This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology
- …
