642 research outputs found
Quantification of the depletion of ozone in the plume of Mount Etna
Volcanoes are an important source of inorganic halogen species into the
atmosphere. Chemical processing of these species generates oxidised, highly
reactive, halogen species which catalyse considerable O<sub>3</sub> destruction
within volcanic plumes. A campaign of ground-based in situ O<sub>3</sub>,
SO<sub>2</sub> and meteorology measurements was undertaken at the summit of
Mount Etna volcano in July/August 2012. At the same time, spectroscopic
measurements were made of BrO and SO<sub>2</sub> columns in the plume
downwind.
<br><br>
Depletions of ozone were seen at all in-plume measurement locations, with average O<sub>3</sub>
depletions ranging from 11–35 nmol mol<sup>−1</sup> (15–45%). Atmospheric processing
times of the plume were estimated to be between 1 and 4 min. A 1-D numerical model of early
plume evolution was also used. It was found that in the early plume O<sub>3</sub> was destroyed at an
approximately constant rate relative to an inert plume tracer. This is ascribed to reactive halogen
chemistry, and the data suggests the majority of the reactive halogen that destroys O<sub>3</sub> in
the early plume is generated within the crater, including a substantial proportion generated in a
high-temperature "effective source region" immediately after emission. The model could approximately
reproduce the main measured features of the ozone chemistry. Model results show a strong dependence of
the near-vent bromine chemistry on the presence or absence of volcanic NO<sub>x</sub> emissions
and suggest that near-vent ozone measurements can be used as a qualitative indicator of NO<sub>x</sub> emission
Euler Integration of Gaussian Random Fields and Persistent Homology
In this paper we extend the notion of the Euler characteristic to persistent
homology and give the relationship between the Euler integral of a function and
the Euler characteristic of the function's persistent homology. We then proceed
to compute the expected Euler integral of a Gaussian random field using the
Gaussian kinematic formula and obtain a simple closed form expression. This
results in the first explicitly computable mean of a quantitative descriptor
for the persistent homology of a Gaussian random field.Comment: 21 pages, 1 figur
Investigations of Protective Coatings for Castings of High-manganese Cast Steels
When cast steel castings are made in moulding sands on matrices of high-silica sand, which has a low fire resistance the problem of theso-called chemical penetration is distinctly visible. Whereas this effect appears to a small degree only when moulding sand matrices are of chromite, zircon or olivine sands. Therefore in case of making castings of high-manganese cast steel (e.g. Hadfield steel) sands not containing free silica should be applied (e.g. olivine sand) or in case of a high-silica matrix protective coatings for moulds and cores should be used. Two protective coatings, magnesite alcoholic (marked as coating 1 and coating 2) originated from different producers and intended for moulds for castings of the Hadfield steel, were selected for investigations. Examinations of the basic properties were performed for these coatings: viscosity, thermal analysis, sedimentation properties, wear resistance. In order to estimate the effectiveness of protective coatings the experimental castings were prepared. When applying coating 1, the surface quality of the casting was worse and traces of interaction between the casting material (cast steel) and the coating were seen. When protective coating 2 was used none interactions were seen and the surface quality was better
Investigation of chlorine radical chemistry in the Eyjafjallajkull volcanic plume using observed depletions in non-methane hydrocarbons
As part of the effort to understand volcanic plume composition and chemistry during the eruption of the Icelandic volcano Eyjafjallajkull, the CARIBIC atmospheric observatory was deployed for three special science flights aboard a Lufthansa passenger aircraft. Measurements made during these flights included the collection of whole air samples, which were analyzed for non-methane hydrocarbons (NMHCs). Hydrocarbon concentrations in plume samples were found to be reduced to levels below background, with relative depletions characteristic of reaction with chlorine radicals (Cl). Recent observations of halogen oxides in volcanic plumes provide evidence for halogen radical chemistry, but quantitative data for free halogen radical concentrations in volcanic plumes were absent. Here we present the first observation-based calculations of Cl radical concentrations in volcanic plumes, estimated from observed NMHC depletions. Inferred Cl concentrations were between 1.3 × 10 and 6.6 × 10 Cl cm. The relationship between NMHC variability and local lifetimes was used to investigate the ratio between OH and Cl within the plume, with [OH]/[Cl] estimated to be ∼37. Copyright 2011 by the American Geophysical Union
- …
