744 research outputs found

    Simulation Evaluations of an Autonomous Urban Air Mobility Network Management and Separation Service

    Get PDF
    This paper presents an initial implementation of an autonomous Urban Air Mobility network management and aircraft separation service for urban airspace that does 1) departure and arrival scheduling across the network, 2) continuous trajectory management to ensure safe separation between aircraft, and 3) seamless integration with traditional operations. The highly-autonomous AutoResolver algorithm developed for traditional aviation was extended to provide these capabilities. An evaluation of this initial implementation was conducted in fast-time simulations using a dense, two-hour traffic scenario with Urban Air Mobility aircraft flying between a network of 20 vertiports in the Dallas-Fort Worth metroplex. When the spatial separation was reduced from 0:3nmi to 0:1nmi, the total de- lay decreased by 7:3%; when the temporal separation was reduced from 60s to 45s, the total delay decreased by 28:4%. The total number of conflict resolutions decreased by 26% and 17%, respectively. Furthermore, when a scheduling horizon greater than the duration of UAM flights was used (50min), most conflicts were resolved pre-departure producing ground delay. By comparison, when a shorter scheduling horizon was used (8min), most conflicts were resolved post-departure generating airborne delay. For all scheduling and separation constraints tested, AutoResolver prevented loss of separation from occurring. Urban Air Mobility operations have the ability to revolutionize how people and goods are transported and this paper presents initial research focusing on the high levels of autonomy required for an airspace system capable of scaling to handle significantly higher densities of aircraft

    NIKEL_AMC: Readout electronics for the NIKA2 experiment

    Full text link
    The New Iram Kid Arrays-2 (NIKA2) instrument has recently been installed at the IRAM 30 m telescope. NIKA2 is a state-of-art instrument dedicated to mm-wave astronomy using microwave kinetic inductance detectors (KID) as sensors. The three arrays installed in the camera, two at 1.25 mm and one at 2.05 mm, feature a total of 3300 KIDs. To instrument these large array of detectors, a specifically designed electronics, composed of 20 readout boards and hosted in three microTCA crates, has been developed. The implemented solution and the achieved performances are presented in this paper. We find that multiplexing factors of up to 400 detectors per board can be achieved with homogeneous performance across boards in real observing conditions, and a factor of more than 3 decrease in volume with respect to previous generations.Comment: 21 pages; 16 figure

    Autonomous Coordinated Airspace Services for Terminal and Enroute Operations with Wind Errors

    Get PDF
    As novel uses of the airspace continue to multiply, there is increasing demand for access to high-density terminal areas around major airports. Since the predicted demand for urban-air-mobility and urban-package-delivery is very high, and the interactions between these different types of aircraft and missions will be extremely complex, increasingly autonomous systems will be required to manage safety and efficiency. This paper presents the current status of an autonomous safety system designed to ensure safe and efficient trajectories for aircraft in terminal airspace, the Terminal Advanced Airspace Concept. Previous papers have demonstrated the efficacy of this algorithm for handling commercial arrivals into a complex metroplex when there is no uncertainty present. This study extends that work to demonstrate the performance of the algorithm under high levels of uncertainty

    Trigger and readout electronics for the STEREO experiment

    Full text link
    The STEREO experiment will search for a sterile neutrino by measuring the anti-neutrino energy spectrum as a function of the distance from the source, the ILL nuclear reactor. A dedicated electronic system, hosted in a single microTCA crate, was designed for this experiment. It performs triggering in two stages with various selectable conditions, processing and readout via UDP/IPBUS of 68 photomultiplier signals continuously digitized at 250 MSPS. Additionally, for detector performance monitoring, the electronics allow on-line calibration by driving LED synchronously with the data acquisition. This paper describes the electronics requirements, architecture and the performances achieved.Comment: Topical Workshop on Electronics for Particle Physics (TWEPP) 2015, Lisboa. 9 pages, 9 figure

    MIMAC : A micro-tpc matrix for directional detection of dark matter

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with CF4 and CHF3. The first results on low energy nuclear recoils (H, F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2010. To appear in Journal of Physic

    Uptake of new treatment strategies for deep vein thrombosis: an international audit

    Get PDF
    Objective. Study of the uptake of new medical technologies provides useful information on the transfer of published evidence into usual practice. We conducted an audit of selected hospitals in three countries (Canada, France, and Switzerland) to identify clinical predictors of low-molecular-weight (LMW) heparin use and outpatient treatment, and to compare the pace of uptake of these new therapeutic approaches across hospitals. Design. Historical review of medical records. Setting and participants. We reviewed the medical records of 3043 patients diagnosed with deep vein thrombosis (DVT) in five Canadian, two French, and two Swiss teaching hospitals from 1994 to 1998. Measures. We explored independent clinical variables associated with LMW heparin use and outpatient treatment, and determined crude and adjusted rates of LMW heparin use and outpatient treatment across hospitals. Results. For the years studied, the overall rates of LMW heparin use and outpatient treatment in the study sample were 34.1 and 15.8%, respectively, with higher rates of use in later years. Many comorbidities were negatively associated with outpatient treatment, and risk-adjusted rates of use of these new approaches varied significantly across hospitals. Conclusion. There has been a relatively rapid uptake of LMW heparins and outpatient treatment for DVT in their early years of availability, but the pace of uptake has varied considerably across hospitals and countrie

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    A {\mu}-TPC detector for the characterization of low energy neutron fields

    Full text link
    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields

    Production of highly-polarized positrons using polarized electrons at MeV energies

    Get PDF
    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-ZZ target. Positron polarization up to 82\% have been measured for an initial electron beam momentum of 8.19~MeV/cc, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.Comment: 5 pages, 4 figure
    corecore