525 research outputs found
Automatic Deduction in Dynamic Geometry using Sage
We present a symbolic tool that provides robust algebraic methods to handle
automatic deduction tasks for a dynamic geometry construction. The main
prototype has been developed as two different worksheets for the open source
computer algebra system Sage, corresponding to two different ways of coding a
geometric construction. In one worksheet, diagrams constructed with the open
source dynamic geometry system GeoGebra are accepted. In this worksheet,
Groebner bases are used to either compute the equation of a geometric locus in
the case of a locus construction or to determine the truth of a general
geometric statement included in the GeoGebra construction as a boolean
variable. In the second worksheet, locus constructions coded using the common
file format for dynamic geometry developed by the Intergeo project are accepted
for computation. The prototype and several examples are provided for testing.
Moreover, a third Sage worksheet is presented in which a novel algorithm to
eliminate extraneous parts in symbolically computed loci has been implemented.
The algorithm, based on a recent work on the Groebner cover of parametric
systems, identifies degenerate components and extraneous adherence points in
loci, both natural byproducts of general polynomial algebraic methods. Detailed
examples are discussed.Comment: In Proceedings THedu'11, arXiv:1202.453
Electronic structure of VO: charge ordering, metal-insulator transition and magnetism
The low and high-temperature phases of VO have been studied by
\textit{ab initio} calculations. At high temperature, all V atoms are
electronically equivalent and the material is metallic. Charge and orbital
ordering, associated with the distortions in the V pseudo-rutile chains, occur
below the metal-insulator transition. Orbital ordering in the low-temperature
phase, different in V and V chains, allows to explain the
distortion pattern in the insulating phase of VO. The in-chain magnetic
couplings in the low-temperature phase turn out to be antiferromagnetic, but
very different in the various V and V bonds. The V dimers
formed below the transition temperature form spin singlets, but V ions,
despite dimerization, apparently participate in magnetic ordering.Comment: 10 pages, 6 figures, 2 table
Enhanced thermoelectric response of hole-doped LaNiO by ab initio calculations
Thermoelectric properties of the system LaNiO have been
studied ab initio. Large Seebeck coefficient values are predicted for the
parent compound, and to some extent remain in the hole-doped metallic phase,
accompanied of an increase in the conductivity. This system, due to its layered
structure would be a suitable candidate for an improvement of its
thermoelectric figure of merit by nanostructurization in thin films, that has
already been shown to increase the electrical conductivity (). Our
calculations show that in the region around LaNiO the system has a
large thermopower at high temperatures and also a substantially increased
. Films grown with this low-doping concentration will show an optimal
relationship between thermopower and . This result is obtained for
various exchange-correlation schemes (correlated, uncorrelated and
parameter-free) that we use to analyze the electronic structure of the
hole-doped compound.Comment: 10 pages, 6 figure
Using a free open source software to teach mathematics
We present the experience of the authors teaching mathematics to freshmen engineering students with the help of the open source computer algebra system Sage. We describe some teaching resources and present an ad hoc distribution of Sage used by the authors
Spongionella secondary metabolites protect mitochondrial function in cortical neurons against oxidative stress
Accepted: 8 January 2014 This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acknowledgments The research leading to these results has received funding from the following FEDER cofunded-grants: From Ministerio de Ciencia y Tecnología, Spain: AGL2009-13581-CO2-01, AGL2012-40485-CO2-01. From Xunta de Galicia, Spain: 10PXIB261254 PR. From the European Union’s Seventh Framework Programme managed by REA—Research Executive Agency (FP7/2007–2013) under grant agreement Nos. 265896 BAMMBO, 265409 µAQUA, and 262649 BEADS, 315285 CIGUATOOLS and 312184 PHARMASEA. From the Atlantic Area Programme (Interreg IVB Trans-national): 2009-1/117 Pharmatlantic. MER thanks the Government of the Arab Republic of Egypt for a PhD Scholarship. MJ thanks the Scottish University Life Science Alliance which provided funding to set up the compound library.Peer reviewedPublisher PD
Fermiology and transport properties of the half-metallic itinerant ferromagnet CoS: influence of spin orbit coupling
Electronic structure calculations were performed on the compound CoS, an
itinerant ferromagnet whose magnetic properties can be understood in terms of
spin fluctuation theory. We have identified nesting features in the Fermi
surface of the compound, active for long wavelength spin fluctuations. The
electronic structure of the material is close to a half-metal. We show the
importance of introducing spin-orbit coupling (SOC) in the calculations, that
partially destroys the half-metallicity of the material. By means of transport
properties calculations, we have quantified the influence of SOC in the
conductivity at room temperature, with an important decrease comparing to the
GGA alone conductivity. SOC also helps to understand the negative 0 of the
material, whose conductivity varies by a few percent with the introduction of
small perturbations in the states around the Fermi level.Comment: 8 pages, 8 figure
- …
