1,796 research outputs found
Screening of Nuclear Reactions in the Sun and Solar Neutrinos
We quantitatively determine the effect and the uncertainty on solar neutrino
production arising from the screening process. We present predictions for the
solar neutrino fluxes and signals obtained with different screening models
available in the literature and by using our stellar evolution code. We explain
these numerical results in terms of simple laws relating the screening factors
with the neutrino fluxes. Futhermore we explore a wider range of models for
screening, obtained from the Mitler model by introducing and varying two
phenomenological parameters, taking into account effects not included in the
Mitler prescription. Screening implies, with respect to a no-screening case, a
central temperat reduction of 0.5%, a 2% (8%) increase of Beryllium
(Boron)-neutrino flux and a 2% (12%) increase of the Gallium (Chlorine) signal.
We also find that uncertainties due to the screening effect ar at the level of
1% for the predicted Beryllium-neutrino flux and Gallium signal, not exceeding
3% for the Boron-neutrino flux and the Chlorine signal.Comment: postscript file 11 pages + 4 figures compressed and uuencoded we have
replaced the previous paper with a uuencoded file (the text is the same) for
any problem please write to [email protected]
Differential cross sections for muonic atom scattering from hydrogenic molecules
The differential cross sections for low-energy muonic hydrogen atom
scattering from hydrogenic molecules are directly expressed by the
corresponding amplitudes for muonic atom scattering from hydrogen-isotope
nuclei. The energy and angular dependence of these three-body amplitudes is
thus taken naturally into account in scattering from molecules, without
involving any pseudopotentials. Effects of the internal motion of nuclei inside
the target molecules are included for every initial rotational-vibrational
state. These effects are very significant as the considered three-body
amplitudes often vary strongly within the energy interval eV.
The differential cross sections, calculated using the presented method, have
been successfully used for planning and interpreting many experiments in
low-energy muon physics. Studies of nuclear capture in and the
measurement of the Lamb shift in atoms created in H gaseous targets
are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Muonic hydrogen cascade time and lifetime of the short-lived state
Metastable muonic-hydrogen atoms undergo collisional -quenching,
with rates which depend strongly on whether the kinetic energy is above
or below the energy threshold. Above threshold, collisional
excitation followed by fast radiative
deexcitation is allowed. The corresponding short-lived component
was measured at 0.6 hPa room temperature gas pressure, with
lifetime ns (i.e.,
at liquid-hydrogen density) and population
% (per atom). In
addition, a value of the cascade time, ns, was found.Comment: 4 pages, 3 figure
On the realization of Symmetries in Quantum Mechanics
The aim of this paper is to give a simple, geometric proof of Wigner's
theorem on the realization of symmetries in quantum mechanics that clarifies
its relation to projective geometry. Although several proofs exist already, it
seems that the relevance of Wigner's theorem is not fully appreciated in
general. It is Wigner's theorem which allows the use of linear realizations of
symmetries and therefore guarantees that, in the end, quantum theory stays a
linear theory. In the present paper, we take a strictly geometrical point of
view in order to prove this theorem. It becomes apparent that Wigner's theorem
is nothing else but a corollary of the fundamental theorem of projective
geometry. In this sense, the proof presented here is simple, transparent and
therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page
Angular distributions of scattered excited muonic hydrogen atoms
Differential cross sections of the Coulomb deexcitation in the collisions of
excited muonic hydrogen with the hydrogen atom have been studied for the first
time. In the framework of the fully quantum-mechanical close-coupling approach
both the differential cross sections for the transitions and
-averaged differential cross sections have been calculated for exotic atom
in the initial states with the principle quantum number at relative
motion energies eV and at scattering angles
. The vacuum polarization shifts of the
-states are taken into account. The calculated in the same approach
differential cross sections of the elastic and Stark scattering are also
presented. The main features of the calculated differential cross sections are
discussed and a strong anisotropy of cross sections for the Coulomb
deexcitation is predicted.Comment: 5 pages, 9 figure
Role of virtual break-up of projectile in astrophysical fusion reactions
We study the effect of virtual Coulomb break-up, commonly known as the dipole
polarizability, of the deuteron projectile on the astrophysical fusion reaction
3He(d,p)4He. We use the adiabatic approximation to estimate the potential shift
due to the E1 transition to the continuum states in the deuteron, and compute
the barrier penetrability in the WKB approximation. We find that the
enhancement of the penetrability due to the deuteron break-up is too small to
resolve the longstanding puzzle observed in laboratory measurements that the
electron screening effect is surprisingly larger than theoretical prediction
based on an atomic physics model. The effect of the 3He break-up in the
3He(d,p)4He reaction, as well as the 7Li break-up in the 7Li(p,alpha)4He
reaction is also discussed.Comment: 9 pages, 2 eps figure
Fusion rate enhancement due to energy spread of colliding nuclei
Experimental results for sub-barrier nuclear fusion reactions show cross
section enhancements with respect to bare nuclei which are generally larger
than those expected according to electron screening calculations. We point out
that energy spread of target or projectile nuclei is a mechanism which
generally provides fusion enhancement. We present a general formula for
calculating the enhancement factor and we provide quantitative estimate for
effects due to thermal motion, vibrations inside atomic, molecular or crystal
system, and due to finite beam energy width. All these effects are marginal at
the energies which are presently measurable, however they have to be considered
in future experiments at still lower energies. This study allows to exclude
several effects as possible explanation of the observed anomalous fusion
enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl
Atomic effects in astrophysical nuclear reactions
Two models are presented for the description of the electron screening
effects that appear in laboratory nuclear reactions at astrophysical energies.
The two-electron screening energy of the first model agrees very well with the
recent LUNA experimental result for the break-up reaction , which so far defies all available theoretical models.
Moreover, multi-electron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages, are also studied by means of
the Thomas-Fermi model, deriving analytical formulae that establish a lower and
upper limit for the associated screening energy. The results of the second
model, which show a very satisfactory compatibility with the adiabatic
approximation ones, are expected to be particularly useful in future
experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
Target-Selective Drug Delivery through Liposomes Labeled with Oligobranched Neurotensin Peptides.
The structure and the in vitro behavior of liposomes filled with the cytotoxic drug doxorubicin (Doxo) and functionalized on the external surface with a branched moiety containing four copies of the 8-13 neurotensin (NT) peptide is reported. The new functionalized liposomes, DOPC-NT(4) Lys(C(18) )(2) , are obtained by co-aggregation of the DOPC phospholipid with a new synthetic amphiphilic molecule, NT(4) Lys(C(18) )(2) , which contains a lysine scaffold derivatized with a lipophilic moiety and a tetrabranched hydrophilic peptide, NT8-13, a neurotensin peptide fragment well known for its ability to mimic the neurotensin peptide in receptor binding ability. Dynamic light scattering measurements indicate a value for the hydrodynamic radius (RH) of 88.3±4.4 nm. The selective internalization and cytotoxicity of DOPC-NT(4) Lys(C(18) )(2) liposomes containing Doxo, as compared to pure DOPC liposomes, were tested in HT29 human colon adenocarcinoma and TE671 human rhabdomyosarcoma cells, both of which express neurotensin receptors. Peptide-functionalized liposomes show a clear advantage in comparison to pure DOPC liposomes with regard to drug internalization in both HT29 and TE671 tumor cells: FACS analysis indicates an increase in fluorescence signal of the NT(4) -liposomes, compared to the DOPC pure analogues, in both cell lines; cytotoxicity of DOPC-NT(4) Lys(C(18) )(2) -Doxo liposomes is increased four-fold with respect to DOPC-Doxo liposomes in both HT29 and TE671 cell lines. These effects could to be ascribed to the higher rate of internalization for DOPC-NT(4) Lys(C(18) )(2) -Doxo liposomes, due to stronger binding driven by a lower dissociation constant of the NT(4) -liposomes that bind the membrane onto a specific protein, in contrast to DOPC liposomes, which approach the plasma membrane unselectively
- …
