633 research outputs found
Hole Spin Mixing in InAs Quantum Dot Molecules
Holes confined in single InAs quantum dots have recently emerged as a
promising system for the storage or manipulation of quantum information. These
holes are often assumed to have only heavy-hole character and further assumed
to have no mixing between orthogonal heavy hole spin projections (in the
absence of a transverse magnetic field). The same assumption has been applied
to InAs quantum dot molecules formed by two stacked InAs quantum dots that are
coupled by coherent tunneling of the hole between the two dots. We present
experimental evidence of the existence of a hole spin mixing term obtained with
magneto-photoluminescence spectroscopy on such InAs quantum dot molecules. We
use a Luttinger spinor model to explain the physical origin of this hole spin
mixing term: misalignment of the dots along the stacking direction breaks the
angular symmetry and allows mixing through the light-hole component of the
spinor. We discuss how this novel spin mixing mechanism may offer new spin
manipulation opportunities that are unique to holes.Comment: 13 pages, 9 figure
Fast spin rotations by optically controlled geometric phases in a quantum dot
We demonstrate optical control of the geometric phase acquired by one of the
spin states of an electron confined in a charge-tunable InAs quantum dot via
cyclic 2pi excitations of an optical transition in the dot. In the presence of
a constant in-plane magnetic field, these optically induced geometric phases
result in the effective rotation of the spin about the magnetic field axis and
manifest as phase shifts in the spin quantum beat signal generated by two
time-delayed circularly polarized optical pulses. The geometric phases
generated in this manner more generally perform the role of a spin phase gate,
proving potentially useful for quantum information applications.Comment: 4 pages, 3 figures, resubmitted to Physical Review Letter
Electrically tunable g-factors in quantum dot molecular spin states
We present a magneto-photoluminescence study of individual vertically stacked
InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied
electric field tunes the relative energies of the two dots, we observe a strong
resonant increase or decrease in the g-factors of different spin states that
have molecular wavefunctions distributed over both quantum dots. We propose a
phenomenological model for the change in g-factor based on resonant changes in
the amplitude of the wavefunction in the barrier due to the formation of
bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects
response to referee comment
Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs
We present photoluminescence studies of the molecular neutral
biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum
dot pairs. We tune either the hole or the electron levels of the two dots into
tunneling resonances. The spectra are described well within a few-level,
few-particle molecular model. Their properties can be modified broadly by an
electric field and by structural design, which makes them highly attractive for
controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments,
published
All-Optical Ultrafast Control and Read-Out of a Single Negatively Charged Self-Assembled InAs Quantum Dot
We demonstrate the all-optical ultrafast manipulation and read-out of optical
transitions in a single negatively charged self-assembled InAs quantum dot, an
important step towards ultrafast control of the resident spin. Experiments
performed at zero magnetic field show the excitation and decay of the trion
(negatively charged exciton) as well as Rabi oscillations between the electron
and trion states. Application of a DC magnetic field perpendicular to the
growth axis of the dot enables observation of a complex quantum beat structure
produced by independent precession of the ground state electron and the excited
state heavy hole spins
Spin Fine Structure in Optically Excited Quantum Dot Molecules
The interaction between spins in coupled quantum dots is revealed in distinct
fine structure patterns in the measured optical spectra of InAs/GaAs double
quantum dot molecules containing zero, one, or two excess holes. The fine
structure is explained well in terms of a uniquely molecular interplay of spin
exchange interactions, Pauli exclusion and orbital tunneling. This knowledge is
critical for converting quantum dot molecule tunneling into a means of
optically coupling not just orbitals, but spins.Comment: 10 pages, 7 figures, added material, (published
Stimulated Raman spin coherence and spin-flip induced hole burning in charged GaAs quantum dots
High-resolution spectral hole burning (SHB) in coherent nondegenerate
differential transmission spectroscopy discloses spin-trion dynamics in an
ensemble of negatively charged quantum dots. In the Voigt geometry, stimulated
Raman spin coherence gives rise to Stokes and anti-Stokes sidebands on top of
the trion spectral hole. The prominent feature of an extremely narrow spike at
zero detuning arises from spin population pulsation dynamics. These SHB
features confirm coherent electron spin dynamics in charged dots, and the
linewidths reveal spin spectral diffusion processes.Comment: 5 pages, 5 figure
- …
