469 research outputs found
Itô versus Stratonovich calculus in random population growth
Paper that resolves the controversy on whether to use Itô or Stratonovich calculus on stochastic differential equation models applied to poulation growth in random environments
Population growth in random environments: which stochastic calculus?
Refereed scientific paper on stochastic differential equation models of population growth in random environments with resolution of the controversy on the use of Itô or Stratonovich calculus (extension to density-dependent noise intensities). The paper is in press in the Bulletin of ISI containing the Proceedings of the 56th Session of the ISI (2007). An electronic version is available
Weak Allee effects population growth models in a random environment
Based on a deterministic model of population growth with weak Allee e ffects, we propose a general stochastic model that incorporates environmental random fluctuations in the growth process. We study the model properties, existence and uniqueness of solution, the stationary behavior and mean and variance of the time to extinction of the population. We then consider as an example the particular case of a stochastic model with Allee e ffects based on the classic logistic model.Fundação para a Ciência e a Tecnologia e CIMA, Projeto UID/MAT/04674/201
Equações diferenciais estocásticas e aplicações biológicas
Invited dissemination paper on biological applications of stochastic differential equations
Biomatemática
Dissemination paper on Biomathematics, particularly population growth and fishing models, in the proceedings of a Summer School
A SDE growth model: Nonparametric Estimation of the Drift and the Diffusion Coefficients
We study a stochastic differential
equation (SDE) growth model to describe individual growth in random environments. In particular, in this work, we discuss the
estimation of the drift and the diffusion coefficients using non-parametric methods. We illustrate the methodology by using
bovine growth data.
Considering the diffusion process X_{t}, describing the weight
of an animal at age t, characterized by the stochastic
differential equation dX(t)=a(X(t))dt+b(X(t))dW(t), with W(t) being the Wiener process, we estimate the infinitesimal
coefficients a(x) and b(x) nonparametrically. Our goal was to
analyse which of the parametric models (with specific functional
forms for a(x) and b(x)) previously used by us to describe the
evolution of bovine weight were good choices and also to see whether some alternative specific parametrized functional forms of
a(x) and b(x) might be suggested for further parametric
analysis of this data
Modelling Individual Growth in Random Environments
We have considered, as general models for the evolution of animal
size in a random environment, stochastic differential equations of the form dY(t)=b( A-Y(t))dt+\sigma dW(t), where Y(t)=g(X(t)), X(t) is the size of an animal at time t, g
is a strictly increasing function, A=g(a) where a is the asymptotic size, b>0 is a rate of approach to A, s measures the effect of random environmental fluctuations on
growth, and W(t) is the Wiener process. The transient and stationary behaviours of this stochastic differential equation
model are well-known. We have considered the
stochastic Bertalanffy-Richards model (g(x)=x^c with c>0) and the stochastic Gompertz model (g(x)=ln x). We have studied
the problems of parameter estimation for one path and also considered the extension of the estimation
methods to the case of several paths, assumed to be independent. We used numerical techniques to obtain the parameters estimates through maximum likelihood methods
as well as bootstrap methods. The data used for illustration is
the weight of "mertolengo" cattle of the "rosilho" strand
Modelling individual animal growth in random environments
We have considered, as general models for the evolution
of animal size in a random environment, stochastic differential
equations of the form dY(t)=b( A-Y(t))dt+sdW(t), where Y(t)=g(X(t)), X(t) is the size of an animal at time t, g is a strictly increasing function, A=g(a) where
a is the asymptotic size, s measures the effect of random environmental fluctuations on growth, and W(t) is the Wiener
process. We have considered the stochastic Bertalanffy-Richards
model (g(x)=x^c with c>0) and the stochastic Gompertz model (g(x)=ln x). We have studied the problems of parameter estimation for one path and also considered the extension to
several paths. We also used bootstrap methods. Results and methods are illustrated using bovine growth data
Modelos de Crescimento de Bovinos Mertolengos em Ambiente Aleatório
Apresentamos modelos de crescimento individual em ambiente aleatório para descrever a evolução do peso de bovinos mertolengos da estirpe rosilho.
Tendo como objectivo obter modelos que incluam o efeito das variações aleatórias do ambiente na evolução do peso, recorremos a equações diferenciais estocásticas.
Os modelos usados para o crescimento individual de animais em termos do tamanho X(t) no instante t têm geralmente a forma dY(t)/dt = b(A-Y(t)), onde se fez a mudança de variável Y(t)=g(X(t)) com g estritamente crescente. Aqui A=g(a), onde a representa o tamanho assintótico do animal, e b é o coeficiente de crescimento que regula a velocidade de aproximação a A. No caso de haver flutuações aleatórias do ambiente, considerámos o modelo dY(t) = b(A-Y(t))dt + dW(t), onde mede a intensidade das flutuações e W(t) é um processo de Wiener padrão. Aplicámos o modelo e estudámos os problemas de estimação e de previsão para uma trajectória (um animal). Foi também estudada a extensão a várias trajectórias (vários animais) .Considerámos o caso do modelo de Bertalanffy-Richards (g(x)=xc com c>0) e do modelo de Gompertz (g(x)=ln x). Foram também utilizados métodos bootstrap para estudar o problema de estimação
Modelos Multifásicos de Crescimento de Animais em Ambiente Aleatório
Em trabalhos anteriores, estudámos um modelo geral de crescimento individual de animais em ambiente aleatório da forma dY(t) = b(g(a)-Y(t))dt+sdW(t), com Y(t)=g(X(t)), sendo g estritamente crescente (g(x)=x^c e g(x)=ln x são casos particulares típicos), X(t) o peso do animal no instante t, W(t) um processo de Wiener padrão, b o coeficiente de crescimento e a o peso assintótico. Este modelo, que usa uma equação diferencial estocástica, já não sofre do problema dos modelos clássicos de regressão em que um atraso de crescimento num determinado momento não se repercute nos pesos futuros. Aplicámos este modelo monofásico (uma única forma funcional descreve a dinâmica média para toda a curva de crescimento) e estudámos os problemas de estimação. Na literatura têm sido propostos modelos determinísticos multifásicos para o crescimento de bovinos, já que a curva de crescimento observada sugere a existência de pelo menos duas fases.
Aqui estudamos a generalização do modelo estocástico referido ao caso multifásico, em que admitimos que o coeficiente de crescimento b tem valores diferentes para diferentes fases da vida do animal. Por simplicidade, consideramos duas fases com coeficientes de crescimento b1 e b2. Aplicamos a dados de bovinos
- …
