16 research outputs found

    Caenorhabditis elegans: a model to monitor bacterial air quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the <it>Caenorhaditis elegans </it>killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality.</p> <p>Findings</p> <p>The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the <it>Caenorhaditis elegans </it>killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains.</p> <p>Conclusions</p> <p>Bacterial air quality can now be monitored in a one shot test using the <it>Caenorhaditis elegans </it>killing test.</p

    The role of open-air inhalatoria in the air quality improvement in spa towns

    Full text link
    Objectives: The present study was aimed at evaluating microbiological contamination of air in Ciechocinek and Ino­wro­cław – Polish lowland spa towns. Additionally, the impact of open-air inhalatoria on the quality of air was evaluated. Material and Methods: Air samples were collected seasonally in the urban areas, in the recreation areas and in the vicinity of inhalatoria in both towns using impaction. The numbers of mesophilic bacteria, staphylococci, hemolytic bacteria and actinomycetes were determined on media according to the Polish Standard PN-86/Z-04111/02. The number of moulds was determined on media according to the Polish Standard PN-86/Z-04111/03. Results: While the highest numbers of microorganisms were noted at the sites located in the urban areas, the lowest numbers were noted in the vicinity of the open-air inhalatoria. In all the investigated air samples the values of bioaerosol concentrations were below the recommended TLVs (≤ 5000 CFU×m–3 for both bacteria and fungi in outdoor environments). Location of the sampling site was invariably a decisive factor in determining the number of microorganisms in the air. Conclusions: The aerosol which is formed in the open-air inhalatoria has a positive influence on microbiological air quality. Owing to a unique microclimate and low air contamination, Ciechocinek and Inowrocław comply with all necessary requirements set for health resorts specializing in treating upper respiratory tract infections

    Time Resolved Photoluminescence Study of the Wide (Cd,Mn)Te/(Cd,Mg)Te Quantum Well

    No full text
    The static and dynamic properties of excitons and trions in a 80 nm wide Cd1xMnxTe/Cd0.7Mg0.3Cd_{1-x}Mn_xTe/Cd_{0.7}Mg_{0.3}Te quantum well with extremely small Mn content (x=0.00027) have been studied by means of time-integrated and time-resolved photoluminescence experiment at low and elevated temperatures. The trion binding energy has been estimated to be 2.6 ± 0.8 meV. The exciton and trion lifetimes have been measured to be ≈ 150 ps, and ≈ 200 ps, respectively. The temperature dependence of both lifetimes together with the multicomponent character of the PL decay process suggest a spatial localization of excitons and trions in the investigated quantum well
    corecore