465 research outputs found

    A pilot randomised double blind controlled trial of the efficacy of purified fatty acids for the treatment of women with endometriosis-associated pain (PurFECT):study protocol

    Get PDF
    Abstract Background Endometriosis affects 6–10% of women and is associated with debilitating pelvic pain. It costs the UK > £2.8 billion per year in loss of productivity. Endometriosis can be managed by surgical excision or medically by ovarian suppression. However, ~ 75% symptoms recur after surgery and available medical treatments have undesirable side effects and are contraceptive. Omega-3 purified fatty acids (PUFA) have been shown in animal models to reduce factors that are thought to lead to endometriosis-associated pain, have minimal side effects, and no effects on fertility. This paper presents a protocol for a two-arm, pilot parallel randomised controlled trial (RCT) which aims to inform the planning of a future multicentre trial to evaluate the efficacy of Omega-3 PUFA in the management of endometriosis-associated pain in women. Methods The study will recruit women with endometriosis over a 12-month period in the National Health Service (NHS) Lothian, UK, and randomise them to 8 weeks of treatment with Omega-3 PUFA or comparator (olive oil). The primary objective is to assess recruitment and retention rates. The secondary objectives are to determine the effectiveness/acceptability to participants of the proposed methods of recruitment/randomisation/treatments/questionnaires, to inform the sample size calculation and to refine the research methodology for a future large randomised controlled trial. Response to treatment will be monitored by pain scores and questionnaires assessing physical and emotional function compared at baseline and 8 weeks. Discussion We recognise that there may be potential difficulties in mounting a large randomised controlled trial for endometriosis to assess Omega-3 PUFA because they are a dietary supplement readily available over the counter and already used by women with endometriosis. We have therefore designed this pilot study to assess practical feasibility and following the ‘Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials’ recommendations for the design of chronic pain trials. Trial registration ISRCTN4420234

    Medical Therapies for Uterine Fibroids - A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials

    Get PDF
    BACKGROUND: Uterine fibroids are common, often symptomatic and a third of women need repeated time off work. Consequently 25% to 50% of women with fibroids receive surgical treatment, namely myomectomy or hysterectomy. Hysterectomy is the definitive treatment as fibroids are hormone dependent and frequently recurrent. Medical treatment aims to control symptoms in order to replace or delay surgery. This may improve the outcome of surgery and prevent recurrence. PURPOSE: To determine whether any medical treatment can be recommended in the treatment of women with fibroids about to undergo surgery and in those for whom surgery is not planned based on currently available evidence. STUDY SELECTION: Two authors independently identified randomised controlled trials (RCT) of all pharmacological treatments aimed at the treatment of fibroids from a list of references obtained by formal search of MEDLINE, EMBASE, Cochrane library, Science Citation Index, and ClinicalTrials.gov until December 2013. DATA EXTRACTION: Two authors independently extracted data from identified studies. DATA SYNTHESIS: A Bayesian network meta-analysis was performed following the National Institute for Health and Care Excellence-Decision Support Unit guidelines. Odds ratios, rate ratios, or mean differences with 95% credible intervals (CrI) were calculated. RESULTS AND LIMITATIONS: A total of 75 RCT met the inclusion criteria, 47 of which were included in the network meta-analysis. The overall quality of evidence was very low. The network meta-analysis showed differing results for different outcomes. CONCLUSIONS: There is currently insufficient evidence to recommend any medical treatment in the management of fibroids. Certain treatments have future promise however further, well designed RCTs are needed

    Interferon-gamma producing CD4+ T cells quantified by flow cytometry as early markers for Mycobacterium avium ssp. paratuberculosis infection in cattle

    Get PDF
    Current diagnostic methods for Johne's disease in cattle allow reliable detection of infections with Mycobacterium avium ssp. paratuberculosis (MAP) not before animals are 2 years of age. Applying a flow cytometry-based approach (FCA) to quantify a MAP-specific interferon-gamma (IFN-γ) response in T cell subsets, the present study sought to monitor the kinetics of the cell-mediated immune response in experimentally infected calves. Six MAP-negative calves and six calves, orally inoculated with MAP at 10 days of age, were sampled every 4 weeks for 52 weeks post-inoculation (wpi). Peripheral blood mononuclear cells (PBMC) were stimulated with either purified protein derivatives (PPD) or whole cell sonicates derived from MAP (WCSj), M. avium ssp. avium or M. phlei for 6 days followed by labeling of intracellular IFN-γ in CD4+ and CD8+ T cells. No antigen-specific IFN-γ production was detectable in CD8+ cells throughout and the responses of CD4+ cells of MAP-infected and control calves were similar up to 12 wpi. However, the mean fluorescence intensity (MFI) for the detection of IFN-γ in CD4+ cells after WCSj antigen stimulation allowed for a differentiation of animal groups from 16 wpi onwards. This approach had a superior sensitivity (87.8%) and specificity (86.8%) to detect infected animals from 16 wpi onwards, i.e., in an early infection stage, as compared to the IFN-γ release assay (IGRA). Quantification of specific IFN-γ production at the level of individual CD4+ cells may serve, therefore, as a valuable tool to identify MAP-infected juvenile cattle

    Menstruation: science and society

    Get PDF
    © 2020 The Authors Women\u27s health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation—a fast, scarless healing process in healthy individuals—will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, “Menstruation: Science and Society” with an aim to “identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field.” Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration—and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids—to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent “menstrual equity” and “period poverty” movements spreading across high-income countries

    Menstruation: science and society

    Get PDF
    © 2020 The Authors Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation—a fast, scarless healing process in healthy individuals—will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, “Menstruation: Science and Society” with an aim to “identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field.” Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration—and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids—to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent “menstrual equity” and “period poverty” movements spreading across high-income countries

    A polymorphism at the 3'-UTR region of the aromatase gene defines a subgroup of postmenopausal breast cancer patients with poor response to neoadjuvant letrozole

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aromatase (<it>CYP19A1</it>) regulates estrogen biosynthesis. Polymorphisms in <it>CYP19A1 </it>have been related to the pathogenesis of breast cancer (BC). Inhibition of aromatase with letrozole constitutes the best option for treating estrogen-dependent BC in postmenopausal women. We evaluate a series of polymorphisms of <it>CYP19A1 </it>and their effect on response to neoadjuvant letrozole in early BC.</p> <p>Methods</p> <p>We analyzed 95 consecutive postmenopausal women with stage II-III ER/PgR [+] BC treated with neoadjuvant letrozole. Response to treatment was measured by radiology at 4<sup>th </sup>month by World Health Organization (WHO) criteria. Three polymorphisms of <it>CYP19A1</it>, one in exon 7 (rs700519) and two in the 3'-UTR region (rs10046 and rs4646) were evaluated on DNA obtained from peripheral blood.</p> <p>Results</p> <p>Thirty-five women (36.8%) achieved a radiological response to letrozole. The histopathological and immunohistochemical parameters, including hormonal receptor status, were not associated with the response to letrozole. Only the genetic variants (AC/AA) of the rs4646 polymorphism were associated with poor response to letrozole (p = 0.03). Eighteen patients (18.9%) reported a progression of the disease. Those patients carrying the genetic variants (AC/AA) of rs4646 presented a lower progression-free survival than the patients homozygous for the reference variant (p = 0.0686). This effect was especially significant in the group of elderly patients not operated after letrozole induction (p = 0.009).</p> <p>Conclusions</p> <p>Our study reveals that the rs4646 polymorphism identifies a subgroup of stage II-III ER/PgR [+] BC patients with poor response to neoadjuvant letrozole and poor prognosis. Testing for the rs4646 polymorphism could be a useful tool in order to orientate the treatment in elderly BC patients.</p

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    Catechol-O-Methyltransferase Expression and 2-Methoxyestradiol Affect Microtubule Dynamics and Modify Steroid Receptor Signaling in Leiomyoma Cells

    Get PDF
    CONTEXT: Development of optimal medicinal treatments of uterine leiomyomas represents a significant challenge. 2-Methoxyestradiol (2ME) is an endogenous estrogen metabolite formed by sequential action of CYP450s and catechol-O-methyltransferase (COMT). Our previous study demonstrated that 2ME is a potent antiproliferative, proapoptotic, antiangiogenic, and collagen synthesis inhibitor in human leiomyomas cells (huLM). OBJECTIVES: Our objectives were to investigate whether COMT expression, by the virtue of 2ME formation, affects the growth of huLM, and to explore the cellular and molecular mechanisms whereby COMT expression or treatment with 2ME affect these cells. RESULTS: Our data demonstrated that E(2)-induced proliferation was less pronounced in cells over-expressing COMT or treated with 2ME (500 nM). This effect on cell proliferation was associated with microtubules stabilization and diminution of estrogen receptor alpha (ERalpha) and progesterone receptor (PR) transcriptional activities, due to shifts in their subcellular localization and sequestration in the cytoplasm. In addition, COMT over expression or treatment with 2ME reduced the expression of hypoxia-inducible factor -1alpha (HIF-1 alpha) and the basal level as well as TNF-alpha-induced aromatase (CYP19) expression. CONCLUSIONS: COMT over expression or treatment with 2ME stabilize microtubules, ameliorates E(2)-induced proliferation, inhibits ERalpha and PR signaling, and reduces HIF-1 alpha and CYP19 expression in human uterine leiomyoma cells. Thus, microtubules are a candidate target for treatment of uterine leiomyomas. In addition, the naturally occurring microtubule-targeting agent 2ME represents a potential new therapeutic for uterine leiomyomas

    Expression of oestrogen receptors, ERα, ERβ, and ERβ variants, in endometrial cancers and evidence that prostaglandin F may play a role in regulating expression of ERα

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endometrial cancer is the most common gynaecological malignancy; risk factors include exposure to oestrogens and high body mass index. Expression of enzymes involved in biosynthesis of oestrogens and prostaglandins (PG) is often higher in endometrial cancers when compared with levels detected in normal endometrium. Oestrogens bind one of two receptors (ERα and ERβ) encoded by separate genes. The full-length receptors function as ligand-activated transcription factors; splice variant isoforms of ERβ lacking a ligand-binding domain have also been described. PGs act in an autocrine or paracrine manner by binding to specific G-protein coupled receptors.</p> <p>Methods</p> <p>We compared expression of ERs, progesterone receptor (PR) and cyclooxygenase-2 (COX-2) in stage 1 endometrial adenocarcinomas graded as well (G1), moderately (G2) or poorly (G3) differentiated (n ≥ 10 each group) using qRTPCR, single and double immunohistochemistry. We used endometrial adenocarcinoma cell lines to investigate the impact of PGF2α on expression of ERs and PR.</p> <p>Results</p> <p>Full length ERβ (ERβ1) and two ERβ variants (ERβ2, ERβ5) were expressed in endometrial cancers regardless of grade and the proteins were immunolocalised to the nuclei of cells in both epithelial and stromal compartments. Immunoexpression of COX-2 was most intense in cells that were ERα<sup>neg/low</sup>. Expression of PR in endometrial adenocarcinoma (Ishikawa) cell lines and tissues broadly paralleled that of ERα. Treatment of adenocarcinoma cells with PGF2α reduced expression of ERα but had no impact on ERβ1. Cells incubated with PGF2α were unable to increase expression of PR mRNA when they were incubated with E2.</p> <p>Conclusion</p> <p>We have demonstrated that ERβ5 protein is expressed in stage 1 endometrial adenocarcinomas. Expression of three ERβ variants, including the full-length protein is not grade-dependent and most cells in poorly differentiated cancers are ERβ<sup>pos</sup>/ERα<sup>neg</sup>. We found evidence of a link between COX-2, its product PGF2α, and expression of ERα and PR that sheds new light on the cross talk between steroid and PG signalling pathways in this disease.</p
    corecore