27 research outputs found
A review of additive manufacturing technology and cost estimation techniques for the defence sector
“Additive Manufacturing” (AM) is a promising technology which will provide major advantages to Defence Support Service providers, given its ability of delocalised manufacturing near the point of use. The technology is gaining increasing interest due to its disruptive potential. AM groups together a wide range of different approaches which have the ability to convert a 3D file into a physical product by depositing layer upon layer of material. AM is still under development and considered an immature technology. This immaturity provides high level of uncertainty around key indicators such as time and cost. These indicators represent also key decision variables to evaluate AM and compare it with traditional manufacturing. This review paper represents an investigation of existing knowledge on AM and aims to present to the reader the various AM approaches with a detailed focus on the most applicable technologies to Defence Support Services. The paper is structured as follows, firstly the various technologies of AM and their economic aspects are presented, secondly the cost modelling techniques are investigated and finally a discussion is carried out. The contribution of this paper is to present to Defence Support Service stakeholders the various AM technologies and cost modelling techniques for measuring the product or service cost
Additive manufacturing applications in Defence Support Services: current practices and framework for implementation
This research investigates through a systems approach, “Additive Manufacturing” (AM) applications in “Defence Support Services” (DS2). AM technology is gaining increasing interest by DS2 providers, given its ability of rapid, delocalised and flexible manufacturing. From a literature review and interviews with industrial and academic experts, it is apparent that there is a lack of research on AM applications in DS2. This paper’s contribution is represented by the following which has been validated extensively by industrial and academic experts: (1) DS2 current practices conceptual models, (2) a framework for AM implementation and (3) preliminary results of a next generation DS2 based on AM. To carry out the research, a Soft System Methodology was adopted. Results from the research increased the confidence of the disruptive potential of AM within the DS2 context. The main benefits outlined are (1) an increased support to the availability given a reduced response time, (2) reduced supply chain complexity given only supplies of raw materials such as powder and wire, (3) reduced platform inventory levels, providing more space and (4) reduced delivery time of the component as the AM can be located near to the point of use. Nevertheless, more research has to be carried out to quantify the benefits outlined. This requirement provides the basis for the future research work which consists in developing a software tool (based on the framework) for experimentation purpose which is able to dynamically simulate different scenarios and outline data on availability, cost and time of service delivered
A system approach for modelling additive manufacturing in defence acquisition programs
Defence Contractors and NATOMinistry of Defences (MoDs) are currently exploiting Additive Manufacturing (AM) Technology to improve availability of defence platforms and support soldiers deployed in remote Area of Operations (AO). Additive Manufacturing is considered a disruptive technology when employed in a military context to reduce the reliance on supply chains and improve the responsiveness to Operation Tempo (OT). This papers aims at presenting a novel system approach to model the end-to-end process of delivering a product printed with AM and estimate accurately the time and costs of AM. Understanding better the time and costs of AM will allow the MoDs and Defence Contractors to perform comparison with current practices and support their decision making in AM technology acquisition
