2,575 research outputs found

    Measurement of Heavy Quark cross-sections at CDF

    Get PDF
    The measurement of heavy quark cross-sections provides important tests of the QCD theory. This paper reviews recent measurements of single b-quark and correlated b-quark cross-sections at CDF. Two new measurements of the single b-quark production at CDF agree with the first result from CDF Run II. This clarifies the experimental situation and confirms the recent agreement of theoretical prediction with data. A new measurement of the correlated bbˉb\bar{b} cross-section with dimuon events at CDF is presented. It agrees with theory and it does not confirm the anomalously large bbˉb\bar{b} cross-section seen in Run I by CDF and D{\not {\rm O}} in dimuon events.Comment: EPS HEP2007 conference held in Mancheste

    Collinear Subtractions in Hadroproduction of Heavy Quarks

    Full text link
    We present a detailed discussion of the collinear subtraction terms needed to establish a massive variable-flavour-number scheme for the one-particle inclusive production of heavy quarks in hadronic collisions. The subtraction terms are computed by convoluting appropriate partonic cross sections with perturbative parton distribution and fragmentation functions relying on the method of mass factorization. We find (with one minor exception) complete agreement with the subtraction terms obtained in a previous publication by comparing the zero-mass limit of a fixed-order calculation with the genuine massles results in the MSbar scheme. This presentation will be useful for extending the massive variable-flavour-number scheme to other processes.Comment: 29 pages, 17 figures include

    How sensitive are high-pt electron spectra at RHIC to heavy quark energy loss?

    Get PDF
    In nucleus-nucleus collisions, high-pt electron spectra depend on the medium modified fragmentation of their massive quark parents, thus giving novel access to the predicted mass hierarchy of parton energy loss. Here we calculate these spectra in a model, which supplements the perturbative QCD factorization formalism with parton energy loss. In general, we find - within large errors - rough agreement between theory and data on the single inclusive electron spectrum in pp, its nuclear modification factor, and its azimuthal anisotropy. However, the nuclear modification factor depends on the relative contribution of charm and bottom production, which we find to be affected by large perturbative uncertainties. In order for electron measurements to provide a significantly more stringent test of the expected mass hierarchy, one must then disentangle the b- and c-decay contributions, for instance by reconstructing the displaced decay vertices.Comment: 9 pages RevTex, 4 eps-figures, asci-file containing numerical tables of results include

    The RR Lyrae Period - K Luminosity relation for Globular Clusters: an observational approach

    Get PDF
    The Period - metallicity - K band luminosity (PLK) relation for RR Lyrae stars in 15 Galactic globular clusters and in the LMC globular cluster Reticulum has been derived. It is based on accurate near infrared (K) photometry combined with 2MASS and other literature data. The PLK relation has been calibrated and compared with the previous empirical and theoretical determinations in literature. The zero point of the absolute calibration has been obtained from the K magnitude of RR Lyr whose distance modulus has been measured via trigonometric parallax with HST. Using this relation we obtain a distance modulus to the LMC of (m-M)_0 = 18.54 \pm 0.15 mag, in good agreement with recent determinations based on the analysis of Cepheid variable stars.Comment: 6 pages, 4 figures, accepted for publication by MNRA

    J/psi Production: Tevatron and Fixed-Target Collisions

    Full text link
    In this talk I show the results of a fit of the NRQCD matrix elements to the CDF data for direct J/ψJ/\psi production, by including the radiative corrections to the colour-singlet channel and the effect of the kTk_T-smearing. Furthermore I perform the NLO NRQCD analysis of J/ψJ/\psi production in fixed-target proton-nucleon collisions and I fit the colour-octet matrix elements to the available experimental data. The results are compared to the Tevatron ones.Comment: 6 pages, 3 figures. Talk given at the QCD99 Euroconference, Montpellier, France, July 199

    Prospects for the Measurement of the Higgs Yukawa Couplings to b and c quarks, and muons at CLIC

    Get PDF
    The investigation of the properties of the Higgs boson, especially a test of the predicted linear dependence of the branching ratios on the mass of the final state is going to be an integral part of the physics program at colliders at the energy frontier for the foreseeable future. The large Higgs boson production cross section at a 3TeV CLIC machine allows for a precision measurement of the Higgs branching ratios. The cross section times branching ratio of the decays H->bb, H->cc and H->{\mu}{\mu} of a Standard Model Higgs boson with a mass of 120 GeV can be measured with a statistical uncertainty of 0.23%, 3.1% and 15%, respectively, assuming an integrated luminosity of 2 ab-1.Comment: 6 pages, 4 figure

    Heavy-to-light ratios as a test of medium-induced energy loss at RHIC and the LHC

    Full text link
    The ratio of nuclear modification factors of high-pTp_T heavy-flavored mesons tolight-flavored hadrons (heavy-to-light ratio) is shown to be a sensitive tool to test medium-induced energy loss at RHIC and LHC energies. Heavy-to-light ratios of DD mesons at RHIC in the region 7<pT<127<p_T<12 GeV, and of DD and BB mesons at the LHC in the region 10<pT<2010<p_T<20 GeV, are proposed for such a test. Finally, the different contributions to the nuclear modification factor for electrons at RHIC are analyzed. Preliminary PHENIX and STAR data are compatible with radiative energy loss provided the contribution of electrons from beauty decays is small compared to that from charm.Comment: 5 pages, latex, 4 eps figs included using graphicx; to appear in the proceedings of 18th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2005 (QM 2005), Budapest, Hungary, 4-9 Aug 200

    Suppression of heavy flavors at RHIC & LHC

    Get PDF
    Some of the open questions on jet quenching are expected to be clarified by measuring heavy-flavored mesons at high transverse momentum. The formalism based on radiative in-medium energy-loss, which describes other high-pt results at RHIC, gives definite predictions for the suppression of charm and beauty quarks. However, the uncertainties from both contributions to the observed electrons make the interpretation of the data difficult due to the absence of a well calibrated benchmark. We review the present situation as well as the consequences for the future LHC. We also comment on the use of heavy flavored jet angular correlations as an additional tool to study the underline dynamics of jet quenching.Comment: Plenary talk at the Conference Hard Probes 2006, Asilomar (California) June 2006. 8 page

    A Short Review on Jet Identification

    Get PDF
    Jets can be used to probe the physical properties of the high energy density matter created in collisions at the Relativistic Heavy Ion Collider (RHIC). Measurements of strong suppression of inclusive hadron distributions and di-hadron correlations at high pTp_{T} have already provided evidence for partonic energy loss. However, these measurements suffer from well-known geometric biases due to the competition of energy loss and fragmentation. These biases can be avoided if the jets are reconstructed independently of their fragmentation details - quenched or unquenched. In this paper, we discuss modern jet reconstruction algorithms (cone and sequential recombination) and their corresponding background subtraction techniques required by the high multiplicities of heavy ion collisions. We review recent results from the STAR experiment at RHIC on direct jet reconstruction in central Au+Au collisions at sNN=200\sqrt {s_{NN}}= 200 GeV.Comment: Proceedings for the invited talk of Hot Quarks 2008, Estes Park, CO 18-23 August 200

    D^* production from e^+e^- to ep collisions in NLO QCD

    Get PDF
    Fragmentation functions for D mesons, based on the convolution of a perturbative part, related to the heavy quark perturbative showering, and a non-perturbative model for its hadronization into the meson, are used to describe D^* production in e^+e^- and ep collisions. The non-perturbative part is determined by fitting the e^+e^- data taken by ARGUS and OPAL at 10.6 and 91.2 GeV respectively. When fitting with a non perturbative Peterson fragmentation function and using next-to-leading evolution for the perturbative part, we find an epsilon parameter sensibly different from the one commonly used, which is instead found with a leading order fit. The use of this new value is shown to increase considerably the cross section for D^* production at HERA, suggesting a possible reconciliation between the next-to-leading order theoretical predictions and the experimental data.Comment: 20 pages, LaTeX2e, 8 Postscript figure
    corecore