878 research outputs found
Editorial overview: Folding and binding: In silico, in vitro and in cellula
The essence of any biological processes relies on the conformational states of macromolecules and their interactions. It comes therefore with no surprises that the study of folding and binding has been centre stage since the birth of structural biology. In this context, the collaborative efforts of experimen- talists and theoreticians have tremendously increased our current knowl- edge on macromolecular structure and recognition. Nevertheless, several challenges and open questions are still present and a multidisciplinary approach would appear the most appropriate means to shed light onto the mechanisms of folding and binding to the highest level of detail. This thematic issue brings together a collection of reviews describing our current understanding of folding and binding, looking at these fundamental pro- blems from a wide perspective ranging from the single molecule to the complexity of the living cell, drawing on approaches that span from compu- tational (in silico), to the test tube (in vitro) and cell cultures (in cellula)
Estimation of protein folding probability from equilibrium simulations
The assumption that similar structures have similar folding probabilities
() leads naturally to a procedure to evaluate for every
snapshot saved along an equilibrium folding-unfolding trajectory of a
structured peptide or protein. The procedure utilizes a structurally
homogeneous clustering and does not require any additional simulation. It can
be used to detect multiple folding pathways as shown for a three-stranded
antiparallel -sheet peptide investigated by implicit solvent molecular
dynamics simulations.Comment: 7 pages, 4 figures, supplemetary material
Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition
In this paper, we consider the infinite-dimensional integration problem on
weighted reproducing kernel Hilbert spaces with norms induced by an underlying
function space decomposition of ANOVA-type. The weights model the relative
importance of different groups of variables. We present new randomized
multilevel algorithms to tackle this integration problem and prove upper bounds
for their randomized error. Furthermore, we provide in this setting the first
non-trivial lower error bounds for general randomized algorithms, which, in
particular, may be adaptive or non-linear. These lower bounds show that our
multilevel algorithms are optimal. Our analysis refines and extends the
analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K.
Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve
substantially on the error bounds presented there. As an illustrative example,
we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo
multilevel algorithms based on scrambled polynomial lattice rules.Comment: 31 pages, 0 figure
Level Set Approach to Reversible Epitaxial Growth
We generalize the level set approach to model epitaxial growth to include
thermal detachment of atoms from island edges. This means that islands do not
always grow and island dissociation can occur. We make no assumptions about a
critical nucleus. Excellent quantitative agreement is obtained with kinetic
Monte Carlo simulations for island densities and island size distributions in
the submonolayer regime.Comment: 7 pages, 9 figure
Pricing and Hedging Asian Basket Options with Quasi-Monte Carlo Simulations
In this article we consider the problem of pricing and hedging
high-dimensional Asian basket options by Quasi-Monte Carlo simulation. We
assume a Black-Scholes market with time-dependent volatilities and show how to
compute the deltas by the aid of the Malliavin Calculus, extending the
procedure employed by Montero and Kohatsu-Higa (2003). Efficient
path-generation algorithms, such as Linear Transformation and Principal
Component Analysis, exhibit a high computational cost in a market with
time-dependent volatilities. We present a new and fast Cholesky algorithm for
block matrices that makes the Linear Transformation even more convenient.
Moreover, we propose a new-path generation technique based on a Kronecker
Product Approximation. This construction returns the same accuracy of the
Linear Transformation used for the computation of the deltas and the prices in
the case of correlated asset returns while requiring a lower computational
time. All these techniques can be easily employed for stochastic volatility
models based on the mixture of multi-dimensional dynamics introduced by Brigo
et al. (2004).Comment: 16 page
On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials
The paper concerns - convergence to equilibrium for weak solutions of
the spatially homogeneous Boltzmann Equation for soft potentials (-4\le
\gm<0), with and without angular cutoff. We prove the time-averaged
-convergence to equilibrium for all weak solutions whose initial data have
finite entropy and finite moments up to order greater than 2+|\gm|. For the
usual -convergence we prove that the convergence rate can be controlled
from below by the initial energy tails, and hence, for initial data with long
energy tails, the convergence can be arbitrarily slow. We also show that under
the integrable angular cutoff on the collision kernel with -1\le \gm<0, there
are algebraic upper and lower bounds on the rate of -convergence to
equilibrium. Our methods of proof are based on entropy inequalities and moment
estimates.Comment: This version contains a strengthened theorem 3, on rate of
convergence, considerably relaxing the hypotheses on the initial data, and
introducing a new method for avoiding use of poitwise lower bounds in
applications of entropy production to convergence problem
Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition
In the selective withdrawal experiment fluid is withdrawn through a tube with
its tip suspended a distance S above a two-fluid interface. At sufficiently low
withdrawal rates, Q, the interface forms a steady state hump and only the upper
fluid is withdrawn. When Q is increased (or S decreased), the interface
undergoes a transition so that the lower fluid is entrained with the upper one,
forming a thin steady-state spout. Near this transition the hump curvature
becomes very large and displays power-law scaling behavior. This scaling allows
for steady-state hump profiles at different flow rates and tube heights to be
scaled onto a single similarity profile. I show that the scaling behavior is
independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl
Phase Transitions in Chemisorbed Systems
Contains report on five research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003
2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix
A series of photoswitchable, α-helical peptides were studied using two-dimensional infrared spectroscopy (2D-IR). Single-isotope labeling with 13C18O at various positions in the sequence was employed to spectrally isolate particular backbone positions. We show that a single 13C18O label can give rise to two bands along the diagonal of the 2D-IR spectrum, one of which is from an amide group that is hydrogen-bonded internally, or to a solvent molecule, and the other from a non-hydrogen-bonded amide group. The photoswitch enabled examination of both the folded and unfolded state of the helix. For most sites, unfolding of the peptide caused a shift of intensity from the hydrogen-bonded peak to the non-hydrogen-bonded peak. The relative intensity of the two diagonal peaks gives an indication of the fraction of molecules hydrogen-bonded at a certain location along the sequence. As this fraction varies quite substantially along the helix, we conclude that the helix is not uniformly folded. Furthermore, the shift in hydrogen bonding is much smaller than the change of helicity measured by CD spectroscopy, indicating that non-native hydrogen-bonded or mis-folded loops are formed in the unfolded ensemble
Motion of a vortex sheet on a sphere with pole vortices
We cons i der the motion of a vortex sheet on the surface of a unit sphere in the presence of point vortices xed on north and south poles.Analytic and numerical research revealed that a vortex sheet in two-dimensional space has the following three properties.First,the vortex sheet is linearly unstable due to Kelvin-Helmholtz instability.Second,the curvature of the vortex sheet diverges in nite time.Last,the vortex sheet evolves into a rolling-up doubly branched spiral,when the equation of motion is regularized by the vortex method.The purpose of this article is to investigate how the curvature of the sphere and the presence of the pole vortices
- …
