1,306 research outputs found
Identification of Berezin-Toeplitz deformation quantization
We give a complete identification of the deformation quantization which was
obtained from the Berezin-Toeplitz quantization on an arbitrary compact Kaehler
manifold. The deformation quantization with the opposite star-product proves to
be a differential deformation quantization with separation of variables whose
classifying form is explicitly calculated. Its characteristic class (which
classifies star-products up to equivalence) is obtained. The proof is based on
the microlocal description of the Szegoe kernel of a strictly pseudoconvex
domain given by Boutet de Monvel and Sjoestrand.Comment: 26 page
Deformation Quantization of Coadjoint Orbits
A method for the deformation quantization of coadjoint orbits of semisimple
Lie groups is proposed. It is based on the algebraic structure of the orbit.
Its relation to geometric quantization and differentiable deformations is
explored.Comment: Talk presented at the meeting "Noncommutative geometry and Hopf
algebras in Field Theory and Particle Physics", Torino, 199
Star Products on Coadjoint Orbits
We study properties of a family of algebraic star products defined on
coadjoint orbits of semisimple Lie groups. We connect this description with the
point of view of differentiable deformations and geometric quantization.Comment: Talk given at the XXIII ICGTMP, Dubna (Russia) August 200
Dirac Operators on Coset Spaces
The Dirac operator for a manifold Q, and its chirality operator when Q is
even dimensional, have a central role in noncommutative geometry. We
systematically develop the theory of this operator when Q=G/H, where G and H
are compact connected Lie groups and G is simple. An elementary discussion of
the differential geometric and bundle theoretic aspects of G/H, including its
projective modules and complex, Kaehler and Riemannian structures, is presented
for this purpose. An attractive feature of our approach is that it
transparently shows obstructions to spin- and spin_c-structures. When a
manifold is spin_c and not spin, U(1) gauge fields have to be introduced in a
particular way to define spinors. Likewise, for manifolds like SU(3)/SO(3),
which are not even spin_c, we show that SU(2) and higher rank gauge fields have
to be introduced to define spinors. This result has potential consequences for
string theories if such manifolds occur as D-branes. The spectra and
eigenstates of the Dirac operator on spheres S^n=SO(n+1)/SO(n), invariant under
SO(n+1), are explicitly found. Aspects of our work overlap with the earlier
research of Cahen et al..Comment: section on Riemannian structure improved, references adde
On invariants of almost symplectic connections
We study the irreducible decomposition under Sp(2n, R) of the space of
torsion tensors of almost symplectic connections. Then a description of all
symplectic quadratic invariants of torsion-like tensors is given. When applied
to a manifold M with an almost symplectic structure, these instruments give
preliminary insight for finding a preferred linear almost symplectic connection
on M . We rediscover Ph. Tondeur's Theorem on almost symplectic connections.
Properties of torsion of the vectorial kind are deduced
An explicit formula for the Berezin star product
We prove an explicit formula of the Berezin star product on Kaehler
manifolds. The formula is expressed as a summation over certain strongly
connected digraphs. The proof relies on a combinatorial interpretation of
Englis' work on the asymptotic expansion of the Laplace integral.Comment: 19 pages, to appear in Lett. Math. Phy
Toeplitz operators on symplectic manifolds
We study the Berezin-Toeplitz quantization on symplectic manifolds making use
of the full off-diagonal asymptotic expansion of the Bergman kernel. We give
also a characterization of Toeplitz operators in terms of their asymptotic
expansion. The semi-classical limit properties of the Berezin-Toeplitz
quantization for non-compact manifolds and orbifolds are also established.Comment: 40 page
Balanced metrics on Cartan and Cartan-Hartogs domains
This paper consists of two results dealing with balanced metrics (in S.
Donaldson terminology) on nonconpact complex manifolds. In the first one we
describe all balanced metrics on Cartan domains. In the second one we show that
the only Cartan-Hartogs domain which admits a balanced metric is the complex
hyperbolic space. By combining these results with those obtained in [13]
(Kaehler-Einstein submanifolds of the infinite dimensional projective space, to
appear in Mathematische Annalen) we also provide the first example of complete,
Kaehler-Einstein and projectively induced metric g such that is not
balanced for all .Comment: 11 page
Impulsive waves in electrovac direct product spacetimes with Lambda
A complete family of non-expanding impulsive waves in spacetimes which are
the direct product of two 2-spaces of constant curvature is presented. In
addition to previously investigated impulses in Minkowski, (anti-)Nariai and
Bertotti-Robinson universes, a new explicit class of impulsive waves which
propagate in the exceptional electrovac Plebanski-Hacyan spacetimes with a
cosmological constant Lambda is constructed. In particular, pure gravitational
waves generated by null particles with an arbitrary multipole structure are
described. The metrics are impulsive members of a more general family of the
Kundt spacetimes of type II. The well-known pp-waves are recovered for
Lambda=0.Comment: 6 pages, 1 figure, LaTeX 2e. To appear in Class. Quantum Gra
A holomorphic representation of the Jacobi algebra
A representation of the Jacobi algebra by first order differential operators with polynomial
coefficients on the manifold is presented. The
Hilbert space of holomorphic functions on which the holomorphic first order
differential operators with polynomials coefficients act is constructed.Comment: 34 pages, corrected typos in accord with the printed version and the
Errata in Rev. Math. Phys. Vol. 24, No. 10 (2012) 1292001 (2 pages) DOI:
10.1142/S0129055X12920018, references update
- …
