1,306 research outputs found

    Identification of Berezin-Toeplitz deformation quantization

    Full text link
    We give a complete identification of the deformation quantization which was obtained from the Berezin-Toeplitz quantization on an arbitrary compact Kaehler manifold. The deformation quantization with the opposite star-product proves to be a differential deformation quantization with separation of variables whose classifying form is explicitly calculated. Its characteristic class (which classifies star-products up to equivalence) is obtained. The proof is based on the microlocal description of the Szegoe kernel of a strictly pseudoconvex domain given by Boutet de Monvel and Sjoestrand.Comment: 26 page

    Deformation Quantization of Coadjoint Orbits

    Get PDF
    A method for the deformation quantization of coadjoint orbits of semisimple Lie groups is proposed. It is based on the algebraic structure of the orbit. Its relation to geometric quantization and differentiable deformations is explored.Comment: Talk presented at the meeting "Noncommutative geometry and Hopf algebras in Field Theory and Particle Physics", Torino, 199

    Star Products on Coadjoint Orbits

    Get PDF
    We study properties of a family of algebraic star products defined on coadjoint orbits of semisimple Lie groups. We connect this description with the point of view of differentiable deformations and geometric quantization.Comment: Talk given at the XXIII ICGTMP, Dubna (Russia) August 200

    Dirac Operators on Coset Spaces

    Get PDF
    The Dirac operator for a manifold Q, and its chirality operator when Q is even dimensional, have a central role in noncommutative geometry. We systematically develop the theory of this operator when Q=G/H, where G and H are compact connected Lie groups and G is simple. An elementary discussion of the differential geometric and bundle theoretic aspects of G/H, including its projective modules and complex, Kaehler and Riemannian structures, is presented for this purpose. An attractive feature of our approach is that it transparently shows obstructions to spin- and spin_c-structures. When a manifold is spin_c and not spin, U(1) gauge fields have to be introduced in a particular way to define spinors. Likewise, for manifolds like SU(3)/SO(3), which are not even spin_c, we show that SU(2) and higher rank gauge fields have to be introduced to define spinors. This result has potential consequences for string theories if such manifolds occur as D-branes. The spectra and eigenstates of the Dirac operator on spheres S^n=SO(n+1)/SO(n), invariant under SO(n+1), are explicitly found. Aspects of our work overlap with the earlier research of Cahen et al..Comment: section on Riemannian structure improved, references adde

    On invariants of almost symplectic connections

    Get PDF
    We study the irreducible decomposition under Sp(2n, R) of the space of torsion tensors of almost symplectic connections. Then a description of all symplectic quadratic invariants of torsion-like tensors is given. When applied to a manifold M with an almost symplectic structure, these instruments give preliminary insight for finding a preferred linear almost symplectic connection on M . We rediscover Ph. Tondeur's Theorem on almost symplectic connections. Properties of torsion of the vectorial kind are deduced

    An explicit formula for the Berezin star product

    Full text link
    We prove an explicit formula of the Berezin star product on Kaehler manifolds. The formula is expressed as a summation over certain strongly connected digraphs. The proof relies on a combinatorial interpretation of Englis' work on the asymptotic expansion of the Laplace integral.Comment: 19 pages, to appear in Lett. Math. Phy

    Toeplitz operators on symplectic manifolds

    Full text link
    We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.Comment: 40 page

    Balanced metrics on Cartan and Cartan-Hartogs domains

    Get PDF
    This paper consists of two results dealing with balanced metrics (in S. Donaldson terminology) on nonconpact complex manifolds. In the first one we describe all balanced metrics on Cartan domains. In the second one we show that the only Cartan-Hartogs domain which admits a balanced metric is the complex hyperbolic space. By combining these results with those obtained in [13] (Kaehler-Einstein submanifolds of the infinite dimensional projective space, to appear in Mathematische Annalen) we also provide the first example of complete, Kaehler-Einstein and projectively induced metric g such that αg\alpha g is not balanced for all α>0\alpha >0.Comment: 11 page

    Impulsive waves in electrovac direct product spacetimes with Lambda

    Full text link
    A complete family of non-expanding impulsive waves in spacetimes which are the direct product of two 2-spaces of constant curvature is presented. In addition to previously investigated impulses in Minkowski, (anti-)Nariai and Bertotti-Robinson universes, a new explicit class of impulsive waves which propagate in the exceptional electrovac Plebanski-Hacyan spacetimes with a cosmological constant Lambda is constructed. In particular, pure gravitational waves generated by null particles with an arbitrary multipole structure are described. The metrics are impulsive members of a more general family of the Kundt spacetimes of type II. The well-known pp-waves are recovered for Lambda=0.Comment: 6 pages, 1 figure, LaTeX 2e. To appear in Class. Quantum Gra

    A holomorphic representation of the Jacobi algebra

    Full text link
    A representation of the Jacobi algebra h1su(1,1)\mathfrak{h}_1\rtimes \mathfrak{su}(1,1) by first order differential operators with polynomial coefficients on the manifold C×D1\mathbb{C}\times \mathcal{D}_1 is presented. The Hilbert space of holomorphic functions on which the holomorphic first order differential operators with polynomials coefficients act is constructed.Comment: 34 pages, corrected typos in accord with the printed version and the Errata in Rev. Math. Phys. Vol. 24, No. 10 (2012) 1292001 (2 pages) DOI: 10.1142/S0129055X12920018, references update
    corecore